Effect of plastic deformation on the precipitation sequence of 2024 aluminum alloy

Author(s):  
J. C. Guía-Tello ◽  
C. G. Garay-Reyes ◽  
G. Rodríguez-Cabriales ◽  
H. M. Medrano-Prieto ◽  
M. A. Ruiz-Esparza-Rodríguez ◽  
...  



Author(s):  
Stanislav Krymskiy ◽  
Rafis Ilyasov ◽  
Elena Avtokratova ◽  
Oleg Sitdikov ◽  
Anastasia Khazgalieva ◽  
...  

Effects of severe plastic deformation by isothermal сryorolling with a strain of e~2 and subsequent natural and artificial aging on the structure and resistance to intergranular corrosion (IGC) of the preliminary quenched 2024 aluminum alloy of standard and Zr modified compositions were investigated. Increasing the temperature of aging leads to decreasing the alloy IGC resistance due to precipitation of more stable strengthening S-phase (Al2CuMg), rising difference of electrochemical potentials at grain and subgrain boundaries. Zr additions, оn the opposite, significantly increased the alloy IGC resistance in both naturally and artificially aged conditions, reducing its depth and intensity. The main structural factor, influencing the alloy corrosion behavior, is excess phases: their composition, volume fraction and distribution.





2007 ◽  
Vol 44 (6) ◽  
pp. 290-298 ◽  
Author(s):  
Aleksandra Pataric ◽  
Zvonko Gulisija ◽  
Srdjan Markovic


Author(s):  
K. B. Demétrio ◽  
A.P. G. Nogueira ◽  
C. Menapace ◽  
T. Bendo ◽  
A. Molinari




2010 ◽  
Vol 452-453 ◽  
pp. 601-604
Author(s):  
Muhammed Sohel Rana ◽  
Md. Shafiul Ferdous ◽  
Chobin Makabe ◽  
Masaki Fujikawa

The enhancement method of fatigue life and the crack initiate and growth behavior of a holed specimen was investigated by using the 2024 Aluminum alloy and 0.45% Carbon steel. The purpose of present study is to propose a simple technical method for enhancement of fatigue life in a notched specimen. Also, the effect of local plastic deformation by cold work on fatigue crack initiation behavior was examined. This paper presents a basic experimental kinematic cold expansion method by inserting and removing a pin through the specimen hole. The shape of cross-section of pin was a circle or an ellipse. It was shown that the fatigue life of the specimen with the cold-worked hole was longer than that of the specimen with non-cold-worked hole for the case of same stress level in aluminum alloy and carbon steel. Also, the fatigue strength was higher in the case of the cold expanded hole. In this study, a methodology of lengthening of fatigue life of holed specimen is shown. Also, the improvement conditions of fatigue life were significantly affected by shape of pin, local hardening and residual stress conditions. The fatigue life improvement of the damaged component of structures was studied.



2014 ◽  
Vol 794-796 ◽  
pp. 351-356
Author(s):  
Yohei Harada ◽  
Kozo Ishizuka ◽  
Shinji Kumai

High strength 2024 aluminum alloy studs were joined to galvanized, galvannealed and non-coated steel sheets by using an advanced stud welding method. Effect of the coating layer on the interfacial microstructure and the tensile fracture load of the joints were evaluated. A specially-designed stud having a circular projection at its bottom was pressed against a sheet surface. A discharge current was introduced from the upper part of the stud. Local heating could be achieved by a high current density at a contact point between the projection and sheet. The observation of joint area revealed the projection was severely deformed and spread along the sheet surface. The coating layer of the galvanized steel sheet was removed at the joint interface under the charging voltage of 200 V, while that of the galvannealed one locally remained on the steel surface even at 400 V. This would be strongly related to the melting or liquidus and solidus temperatures of each coating layer. Joining was not achieved at a low charging voltage in the non-coated and galvannealed steel sheets, while high tensile fracture load was obtained even at 200 V in the galvanized ones.



Sign in / Sign up

Export Citation Format

Share Document