Effect of Coating Layer on Advanced Stud Welding of 2024 Aluminum Alloy to Galvanized and Galvannealed Steel Sheet

2014 ◽  
Vol 794-796 ◽  
pp. 351-356
Author(s):  
Yohei Harada ◽  
Kozo Ishizuka ◽  
Shinji Kumai

High strength 2024 aluminum alloy studs were joined to galvanized, galvannealed and non-coated steel sheets by using an advanced stud welding method. Effect of the coating layer on the interfacial microstructure and the tensile fracture load of the joints were evaluated. A specially-designed stud having a circular projection at its bottom was pressed against a sheet surface. A discharge current was introduced from the upper part of the stud. Local heating could be achieved by a high current density at a contact point between the projection and sheet. The observation of joint area revealed the projection was severely deformed and spread along the sheet surface. The coating layer of the galvanized steel sheet was removed at the joint interface under the charging voltage of 200 V, while that of the galvannealed one locally remained on the steel surface even at 400 V. This would be strongly related to the melting or liquidus and solidus temperatures of each coating layer. Joining was not achieved at a low charging voltage in the non-coated and galvannealed steel sheets, while high tensile fracture load was obtained even at 200 V in the galvanized ones.

1991 ◽  
Vol 35 (B) ◽  
pp. 1211-1218
Author(s):  
Hiroharu Kato ◽  
Kiyotaka Imai ◽  
Hideya Tanabe

AbstractA new method, for the on-line determination of the composition and the coating weight of galvannealed (Zn-Fe-alloy-coated) steel sheets using monochromatic incident x-rays with two optical systems, is described. In the case of galvannealed steel sheets, it is difficult to determine the composition and the coating weight precisely by simple XRF, because fluorescent x-rays of Iron are emitted not only from the coating layer but also from the underlying steel sheets. We have developed an on-line analyzer with two optical systems which are different in incident angles, take-off angles and wavelengths of monochromatic incident x-rays. We determine the composition and the coating weight by solving simultaneous equations of the data which we derive using two optical systems. Using monochromatic x-rays enabled us to obtain high precision with high speed. We considered en-or factors in on-line measurement such as statistical error or fluctuation of the distance between the sensor head and steel sheets. This on-line analyzer has been applied to the continuous galvanizing line in our Fukuyama works successfully. As a result, we have been able to significantly improve product quality.


2010 ◽  
Vol 654-656 ◽  
pp. 970-973 ◽  
Author(s):  
Keyan Feng ◽  
Mitsuhiro Watanabe ◽  
Shinji Kumai

Friction stir spot welding (FSSW) was applied to lap joining of aluminum alloy sheets and steel sheets. A 1.2 mm-thick non-plated carbon steel sheet and plated steel sheets with zinc alloy (ZAM), pure zinc (GI), zinc alloy including Fe (GA) and Al-Si alloy (AS) were prepared. The melting temperature of the plated layer is 330, 420, 880 and 640°C, respectively. A 1.1 mm-thick 6022 aluminum alloy sheet was overlapped on the steel sheet. A rotating tool was inserted from the aluminum alloy sheet side and the probe tip was kept at the position of 0.2 mm above the lapped interface for 3 seconds. For ZAM and GI, original plated layers were removed from the interface and intermediate layers were formed at the joint interface. This is because the melting temperature of the plated layer was lower than the interface temperature under the rotating probe tip during the FSSW. In contrast to that, the partial original plated layer remained after welding, and additional layer formed at the plated layer /aluminum alloy interface for GA. For AS, Al-Fe intermetallic compound layer, which was formed at the original Al-Si alloy plated steel surface remained.


2005 ◽  
Vol 91 (3) ◽  
pp. 342-348 ◽  
Author(s):  
Toyomitsu NAKAMURA ◽  
Shojiro OCHIAI ◽  
Sohei IWAMOTO ◽  
Daiki ADACHI ◽  
Hiroshi OKUDA

2020 ◽  
Vol 993 ◽  
pp. 60-67
Author(s):  
Jin Hao Wu ◽  
You Hong Sun ◽  
Qing Nan Meng ◽  
Chi Zhang ◽  
Su Su Peng

WAl12 reinforced 2024 aluminum alloy matrix composites were prepared by powder metallurgy with tungsten particles and W50Al50 alloy particles. The effects of WAl12 on the mechanical properties of 2024 aluminum alloy composites at room temperature and high temperature were studied, and the friction behavior was characterized. The results show that intermetallic WAl12 phase forms in the composite by 2024 aluminum alloy and tungsten. The mechanical properties and friction behavior can be improved by the formation of intermetallic WAl12 phase. The tensile strength of 2024 aluminum alloy at room temperature and 180 °C can be improved by adding tungsten less than 1.5 at.%. Adding 2.0 at.% tungsten can reduce the friction coefficient by 20 % and the scratch width by 40 %. The tensile fracture surface of the sample was analyzed by scanning electron microscopy (SEM), indicating that WAl12 intermetallic phase is closely connected with the aluminum matrix.


2007 ◽  
Vol 44 (6) ◽  
pp. 290-298 ◽  
Author(s):  
Aleksandra Pataric ◽  
Zvonko Gulisija ◽  
Srdjan Markovic

Sign in / Sign up

Export Citation Format

Share Document