A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and retrospective review

2015 ◽  
Vol 26 (7) ◽  
pp. 4475-4512 ◽  
Author(s):  
Poppy Siddiqua ◽  
Walid A. Hadi ◽  
Michael S. Shur ◽  
Stephen K. O’Leary
2013 ◽  
Vol 1577 ◽  
Author(s):  
Walid A. Hadi ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe review some recent results related to the steady-state and transient electron transport that occurs within bulk wurtzite zinc oxide. We employ three-valley Monte Carlo simulations of the electron transport within this material for the purposes of this analysis. Using these results, we devise a means of rendering transparent the electron drift velocity enhancement offered by transient electron transport over steady-state electron transport. A comparison, with results corresponding to gallium nitride, indium nitride, and aluminum nitride, is provided. The device implications of these results are then presented.


2011 ◽  
Vol 1327 ◽  
Author(s):  
Walid A. Hadi ◽  
Michael Shur ◽  
Lester F. Eastman ◽  
Stephen K. O’Leary

ABSTRACTWe briefly review some recent results on the steady-state and transient electron transport that occurs within bulk wurtzite zinc oxide. These results were obtained using an ensemble semi-classical three-valley Monte Carlo simulation approach. They showed that for electric field strengths in excess of 180 kV/cm, the steady-state electron drift velocity associated with bulk wurtzite zinc oxide exceeds that associated with bulk wurtzite gallium nitride. The transient electron transport that occurs within bulk wurtzite zinc oxide was studied by examining how electrons, initially in thermal equilibrium, respond to the sudden application of a constant electric field. These transient electron transport results demonstrated that for devices with dimensions smaller than 0.1 μm, gallium nitride based devices will offer the advantage, owing to their superior transient electron transport, while for devices with dimensions greater than 0.1 μm, zinc oxide based devices will offer the advantage, owing to their superior high-field steady-state electron transport.


2012 ◽  
Vol 112 (12) ◽  
pp. 123722 ◽  
Author(s):  
Walid A. Hadi ◽  
Shamsul Chowdhury ◽  
Michael S. Shur ◽  
Stephen K. O'Leary

2010 ◽  
Vol 150 (43-44) ◽  
pp. 2182-2185 ◽  
Author(s):  
Stephen K. O’Leary ◽  
Brian E. Foutz ◽  
Michael S. Shur ◽  
Lester F. Eastman

1998 ◽  
Vol 512 ◽  
Author(s):  
B. E. Foutz ◽  
S. K. O'Leary ◽  
M. S. Shur ◽  
L. F. Eastman

ABSTRACTThe energy dependent momentum and energy relaxation times, and the effective single valley energy dependent effective mass, are extracted from Monte Carlo simulations of gallium nitride, indium nitride, and aluminum nitride. A simple semi-analytical energy model, which uses these dependencies, is in good agreement with the results of transient Monte Carlo simulations. Both the Monte Carlo and the semi-analytical simulations show that the overshoot effects are most pronounced when the electric field abruptly changes from a value below a critical field to one above. This is attributed to the relatively large difference between the effective energy and momentum relaxation times for such a variation of electric field. Our calculations indicate that gallium nitride and indium nitride should have the most pronounced transient effects. A calculation of the transit times as a function of the gate length shows that an upper bound for the maximum expected cut-off frequencies are 260 GHz and 440 GHz for 0.2 μm gallium nitride and indium nitride field effect transistors, respectively.


Sign in / Sign up

Export Citation Format

Share Document