Aqueous chemical growth of ZnO/CdO nanocomposite thin films: effect of volume ratio and annealing on structural, morphological and optical properties

2020 ◽  
Vol 31 (23) ◽  
pp. 21222-21232
Author(s):  
M. D. Tyona ◽  
G. E. Akpen ◽  
Itodo Anejo ◽  
Kaana Asemave ◽  
P. U. Asogwa ◽  
...  
2021 ◽  
Author(s):  
Jijie Huang ◽  
Di Zhang ◽  
Zhimin Qi ◽  
Bruce Zhang ◽  
Haiyan Wang

Ag nanostructures exhibit extraordinary optical properties, which are important for photonic device integration. Here, we deposited Ag-LiNbO3 (LNO) nanocomposite thin films with Ag nanoparticles (NPs) embedded into LNO matrix, by...


2016 ◽  
Vol 120 (27) ◽  
pp. 14681-14689 ◽  
Author(s):  
Shaista Babar ◽  
Anil U. Mane ◽  
Angel Yanguas-Gil ◽  
Elham Mohimi ◽  
Richard T. Haasch ◽  
...  

Optik ◽  
2017 ◽  
Vol 147 ◽  
pp. 6-13 ◽  
Author(s):  
Linhua Xu ◽  
Gaige Zheng ◽  
Yuzhu Liu ◽  
Jing Su ◽  
Wenjian Kuang ◽  
...  

2000 ◽  
Vol 648 ◽  
Author(s):  
F. Niu ◽  
P.J. Dobson ◽  
B. Cantor

AbstractNovel Si-Al nanocomposite thin films were made by radio frequency co-sputtering of Si and Al with Al content from 0 at.% to 69 at.%. Microstructure and optical properties of the films were characterised by conventional and high resolution transmission electron microscopyand spectrometry in the wavelength range from 200 to 3000 nm. The film microstructure consisted of Al nanoparticles (2-9 nm) embedded in an amorphous Si-Al matrix. Optical absorption spectra of the films up to 50 at.% Al exhibited a sharp absorption peak below500 nm and relatively low absorption above 500 nm. In addition, the absorption peak shifted towards longer wavelengths and the general absorption above 500 nm increased remarkably as Al content increased. For the Si-69at.%Al films, however, an absorption plateau appeared between 300 nm to 700 nm and a second weak and broad absorption peak appeared at around 900 nm. The results are analysed and compared with the optical absorption predicted by various effective medium theories.


Author(s):  
Anna Garahan ◽  
Laurent Pilon ◽  
Juan Yin ◽  
Indu Saxena

This paper aims at developing numerically validated models for predicting the through-plane effective index of refraction and absorption index of nanocomposite thin-films. First, models for the effective optical properties are derived from previously reported analysis applying the volume averaging theory (VAT) to the Maxwell's equations. The transmittance and reflectance of nanoporous thin-films are computed by solving the Maxwell's equations and the associated boundary conditions at all interfaces using finite element methods. The effective optical properties of the films are retrieved by minimizing the root mean square of the relative errors between the computed and theoretical transmittance and reflectance. Nanoporous thin-films made of SiO2 and TiO2 consisting of cylindrical nanopores and nanowires are investigated for different diameters and various porosities. Similarly, electromagnetic wave transport through dielectric medium with embedded metallic nanowires are simulated. Numerical results are compared with predictions from widely used effective property models including (1) Maxwell-Garnett Theory, (2) Bruggeman effective medium approximation, (3) parallel, (4) series, (5) Lorentz-Lorenz, and (6) VAT models. Very good agreement is found with the VAT model for both the effective index of refraction and absorption index. Finally, the effect of volume fraction on the effective complex index of refraction predicted by the VAT model is discussed. For certain values of wavelengths and volume fractions, the effective index of refraction or absorption index of the composite material can be smaller than that of both the continuous and dispersed phases. These results indicate guidelines for designing nanocomposite optical materials.


2012 ◽  
Vol 47 (19) ◽  
pp. 6972-6978 ◽  
Author(s):  
Md. Ahamad Mohiddon ◽  
M. Ghanashyam Krishna

Sign in / Sign up

Export Citation Format

Share Document