The optical properties of Ag/ZnO nanocomposite thin films with different thickness

Optik ◽  
2017 ◽  
Vol 147 ◽  
pp. 6-13 ◽  
Author(s):  
Linhua Xu ◽  
Gaige Zheng ◽  
Yuzhu Liu ◽  
Jing Su ◽  
Wenjian Kuang ◽  
...  
2021 ◽  
Author(s):  
Jijie Huang ◽  
Di Zhang ◽  
Zhimin Qi ◽  
Bruce Zhang ◽  
Haiyan Wang

Ag nanostructures exhibit extraordinary optical properties, which are important for photonic device integration. Here, we deposited Ag-LiNbO3 (LNO) nanocomposite thin films with Ag nanoparticles (NPs) embedded into LNO matrix, by...


2010 ◽  
Vol 177 ◽  
pp. 201-203
Author(s):  
Jing Chu ◽  
Yu Lin Li ◽  
Bing Xu ◽  
Na Zhang ◽  
Qiang Li

Niobium oxide thin films were successfully synthesized starting from niobate nanosheets. The microstructure of as-prepared nanosheets was observed by TEM. The morphology of niobate thin films was investigated by SEM. The phase structure was determined by XRD. The transmittance spectra of as-obtained niobium oxide thin films were measured, and the optical properties were studied. The influences of different thickness on optical properties were also analyzed. As-prepared niobium thin films were treated by being heated at different temperature. The effects of soaking temperature on the structure and optical properties of niobium oxide thin films were discussed in detail.


2016 ◽  
Vol 120 (27) ◽  
pp. 14681-14689 ◽  
Author(s):  
Shaista Babar ◽  
Anil U. Mane ◽  
Angel Yanguas-Gil ◽  
Elham Mohimi ◽  
Richard T. Haasch ◽  
...  

2013 ◽  
Vol 665 ◽  
pp. 159-167
Author(s):  
M.S. Jani ◽  
H.S. Patel ◽  
J.R. Rathod ◽  
K.D. Patel ◽  
V.M. Pathak ◽  
...  

In this paper structural and optical properties of CdSe thin films with different thickness deposited by thermal evaporation under vacuum onto glass substrates are presented. The structural investigations performed by means of XRD technique showed that the films have a polycrystalline and hexagonal (würtzite) structure. The values of some important parameters of the studied films (absorption coefficient and optical bandgap energy) are determined from transmission spectra. The values of the optical bandgap energy (Eg) calculated from the absorption spectra, ranged between 1.67 - 1.74 eV.


2018 ◽  
Vol 26 (10) ◽  
pp. 249-256
Author(s):  
Waleed Khalid Kadhim

In this paper I present the preparation of (Sb2o3) thin films using thermal evaporation in vacuum, procedure with different thickness  (100 ,150 ,200 ,and 250) nm, by using ( hot plate) from Molybdenum matter at temperature in ( 9000c) and the period of time (15mint) ,the prepared in a manner thermal evaporation in a vacuum and precipitated on glass bases, pure Antimony Trioxide (sb2o3 ) thin films with various condition have been successfully deposited by (T.E.V) on glass slide substrates. The substrates temperature of about 100oC and the vacuum of about 10-6 torr, to investigated oxidation of evaporated, measure spectra for prepared films in arrange of wavelength (250 – 1100 nm). The following optical properties have been calculated: the absorption coefficient, the forbidden (Eg) for direct and indirect transitions "absorbance, refractive index,  extinction coefficient, real and imaginary parts" of the dielectric constant.


2000 ◽  
Vol 648 ◽  
Author(s):  
F. Niu ◽  
P.J. Dobson ◽  
B. Cantor

AbstractNovel Si-Al nanocomposite thin films were made by radio frequency co-sputtering of Si and Al with Al content from 0 at.% to 69 at.%. Microstructure and optical properties of the films were characterised by conventional and high resolution transmission electron microscopyand spectrometry in the wavelength range from 200 to 3000 nm. The film microstructure consisted of Al nanoparticles (2-9 nm) embedded in an amorphous Si-Al matrix. Optical absorption spectra of the films up to 50 at.% Al exhibited a sharp absorption peak below500 nm and relatively low absorption above 500 nm. In addition, the absorption peak shifted towards longer wavelengths and the general absorption above 500 nm increased remarkably as Al content increased. For the Si-69at.%Al films, however, an absorption plateau appeared between 300 nm to 700 nm and a second weak and broad absorption peak appeared at around 900 nm. The results are analysed and compared with the optical absorption predicted by various effective medium theories.


Author(s):  
Anna Garahan ◽  
Laurent Pilon ◽  
Juan Yin ◽  
Indu Saxena

This paper aims at developing numerically validated models for predicting the through-plane effective index of refraction and absorption index of nanocomposite thin-films. First, models for the effective optical properties are derived from previously reported analysis applying the volume averaging theory (VAT) to the Maxwell's equations. The transmittance and reflectance of nanoporous thin-films are computed by solving the Maxwell's equations and the associated boundary conditions at all interfaces using finite element methods. The effective optical properties of the films are retrieved by minimizing the root mean square of the relative errors between the computed and theoretical transmittance and reflectance. Nanoporous thin-films made of SiO2 and TiO2 consisting of cylindrical nanopores and nanowires are investigated for different diameters and various porosities. Similarly, electromagnetic wave transport through dielectric medium with embedded metallic nanowires are simulated. Numerical results are compared with predictions from widely used effective property models including (1) Maxwell-Garnett Theory, (2) Bruggeman effective medium approximation, (3) parallel, (4) series, (5) Lorentz-Lorenz, and (6) VAT models. Very good agreement is found with the VAT model for both the effective index of refraction and absorption index. Finally, the effect of volume fraction on the effective complex index of refraction predicted by the VAT model is discussed. For certain values of wavelengths and volume fractions, the effective index of refraction or absorption index of the composite material can be smaller than that of both the continuous and dispersed phases. These results indicate guidelines for designing nanocomposite optical materials.


2017 ◽  
Vol 19 (23) ◽  
pp. 15084-15097 ◽  
Author(s):  
Sundar Kunwar ◽  
Mao Sui ◽  
Puran Pandey ◽  
Quanzhen Zhang ◽  
Ming-Yu Li ◽  
...  

Semi-spherical and irregular Pd nanoparticles and voids are fabricated on sapphire(0001) by the solid-state dewetting of sputter-deposited Pd thin films at different thickness and temperature. The structural evolution, surface morphology transformation and optical properties of Pd nanostructures are probed.


Sign in / Sign up

Export Citation Format

Share Document