Preparation and thermal conductivity properties of high-temperature resistance polyimide composite films based on silver nanowires-decorated multi-walled carbon nanotubes

Author(s):  
Xiwen Zhang ◽  
Bin Zhang ◽  
Mingming Sun ◽  
Jianhui Li ◽  
Caizhao Liu
2013 ◽  
Vol 716 ◽  
pp. 373-378
Author(s):  
Qian Zhang ◽  
Xin Bao Gao ◽  
Tian Peng Li

Carbon nanotube/expanded graphite composite material was prepared by expanding the mixture of multi-walled carbon nanotubes and expansible graphite under the condition of high temperature. The microstructure and composition was studied by using SEM and XRD. The study shows that the tubular structure of carbon nanotubes in the composite material is changed by high temperature expanding process, and the microstructure is different with different expanding temperature. When the expanding temperature was 900°C, carbon nanotubes transformed, then attached to the surface of expanded graphite flake, so carbon nanotubes and expanding graphite combined strongly; globular carbon nanotubes attached to the surface of expanded graphite flake at the temperature of 700°C, both were combined much more strongly; carbon nanotubes retained the tube structure at the temperature of 500°C, combination was looser due to the simple physical adsorption. The result shows that the choice of expanding temperature has an important effect on microstructure of carbon nanotube/expanded graphite composite material.


2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 798
Author(s):  
Ana T. S. C. Brandão ◽  
Liana Anicai ◽  
Oana Andreea Lazar ◽  
Sabrina Rosoiu ◽  
Aida Pantazi ◽  
...  

Nano carbons, such as graphene and carbon nanotubes, show very interesting electrochemical properties and are becoming a focus of interest in many areas, including electrodeposition of carbon–metal composites for battery application. The aim of this study was to incorporate carbon materials (namely oxidized multi-walled carbon nanotubes (ox-MWCNT), pristine multi-walled carbon nanotubes (P-MWCNT), and reduced graphene oxide (rGO)) into a metallic tin matrix. Formation of the carbon–tin composite materials was achieved by electrodeposition from a choline chloride-based ionic solvent. The different structures and treatments of the carbon materials will create metallic composites with different characteristics. The electrochemical characterization of Sn and Sn composites was performed using chronoamperometry, potentiometry, electrochemical impedance, and cyclic voltammetry. The initial growth stages of Sn and Sn composites were characterized by a glassy-carbon (GC) electrode surface. Nucleation studies were carried out, and the effect of the carbon materials was characterized using the Scharifker and Hills (SH) and Scharifker and Mostany (SM) models. Through a non-linear fitting method, it was shown that the nucleation of Sn and Sn composites on a GC surface occurred through a 3D instantaneous process with growth controlled by diffusion. According to Raman and XRD analysis, carbon materials were successfully incorporated at the Sn matrix. AFM and SEM images showed that the carbon incorporation influences the coverage of the surface as well as the size and shape of the agglomerate. From the analysis of the corrosion tests, it is possible to say that Sn-composite films exhibit a comparable or slightly better corrosion performance as compared to pure Sn films.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103184-103188
Author(s):  
Ying Tong ◽  
Yuanyuan Wang ◽  
Bowen Gao ◽  
Lei Su ◽  
Xueji Zhang

Here the combination of carboxylated multi-walled carbon nanotubes (CMWCNTs) and Prussian blue (PB) for fabricating pH-responsive electroactive composite thin films is reported.


2009 ◽  
Vol 60-61 ◽  
pp. 394-398 ◽  
Author(s):  
Gen Sheng Wu ◽  
Jue Kuan Yang ◽  
Shu Lin Ge ◽  
Yu Juan Wang ◽  
Min Hua Chen ◽  
...  

The stable and homogeneneous aqueous suspension of carbon nanotubes was prepared in this study. The stability of the nanofluids was improved greatly due to the use of a new dispersant, humic acid. The thermal conductivity of the aqueous suspension was measured with the 3ω method. The experimental results showed that the thermal conductivity of the suspensions increases with the temperature and also is nearly proportional to the loading of the nanoparticles. The thermal conductivity enhancement of single-walled carbon nanotubes (SWNTs) suspensions is better than that of the multi-walled carbon nanotubes (MWNTs) suspensions. Especially for a volume fraction of 0.3846% SWNTs, the thermal conductivity is enhanced by 40.5%. Furthermore, the results at 30°C match well with Jang and Choi’s model.


Sign in / Sign up

Export Citation Format

Share Document