Toxicity of Ag Nanoparticles Synthesized Using Stearic Acid from Catharanthus roseus Leaf Extract Against Earias vittella and Mosquito Vectors (Culex quinquefasciatus and Aedes aegypti)

2017 ◽  
Vol 28 (5) ◽  
pp. 2477-2492 ◽  
Author(s):  
Manickam Pavunraj ◽  
Kathirvelu Baskar ◽  
Veeramuthu Duraipandiyan ◽  
Naif Abdullah Al-Dhabi ◽  
Venkatachalam Rajendran ◽  
...  
Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 596
Author(s):  
Anuluck Junkum ◽  
Wanchai Maleewong ◽  
Atiporn Saeung ◽  
Danita Champakaew ◽  
Arpaporn Chansang ◽  
...  

Ligusticum sinense Oliv. cv. is a species of Umbelliferae (Apiaceae), a large plant family in the order Apiales. In this study, L. sinense hexane extract nanoemulsion gel (LHE-NEG) was investigated for mosquito repellency and compared to the standard chemical, N,N-diethyl-3-methylbenzamide (DEET), with the goal of developing a natural alternative to synthetic repellents in protecting against mosquito vectors. The results demonstrated that LHE-NEG afforded remarkable repellency against Aedes aegypti, Anopheles minimus, and Culex quinquefasciatus, with median protection times (MPTs) of 5.5 (4.5–6.0), 11.5 (8.5–12.5), and 11.25 (8.5–12.5) h, respectively, which was comparable to those of DEET-nanoemulsion gel (DEET-NEG: 8.5 (7.0–9.0), 12.0 (10.0–12.5), and 12.5 (10.0–13.5) h, respectively). Evaluation of skin irritation in 30 human volunteers revealed no potential irritant from LHE-NEG. The physical and biological stability of LHE-NEG were determined after being kept under heating/cooling cycle conditions. The stored samples of LHE-NEG exhibited some changes in appearance and differing degrees of repellency between those kept for 3 and 6 heating/cooling cycles, thus providing slightly shorter MPTs of 4.25 (4.0–4.5) and 3.25 (2.5–3.5) h, respectively, when compared to those of 5.0 (4.5–6.0) h in fresh preparation. These findings encourage commercially developed LHE-based products as an alternative to conventional synthetic repellents in preventing mosquito bites and helping to interrupt mosquito-borne disease transmission.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2546 ◽  
Author(s):  
Walter S. Leal

After a 40-year hiatus, the International Congress of Entomology (ICE 2016) convened in Orlando, Florida (September 25-30, 2016). One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.


RSC Advances ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 3838-3851 ◽  
Author(s):  
Chinnasamy Ragavendran ◽  
Nawal Kishore Dubey ◽  
Devarajan Natarajan

The efficacy of bioactive compounds identified from Beauveria bassiana extracts as effective larvicidal and pupicidal agents against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquito vectors under laboratory conditions are studied.


2020 ◽  
Vol 9 (1) ◽  
pp. 203-210

The available controlling agents for mosquito vectors are chemical insecticides and the frequent usage of these insecticides creating resistance among mosquito vectors and environmental pollutions. Thus, the study was designed to synthesize and characterize the Ag nanoparticles (AgNPs) through a methanol leaf extract of Ocimum canum and find the larvicidal prospective of the AgNPs on the 4th instar larvae of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The obtained outcomes show that the methanol leaf extract of O. canum was effectively reduced the silver ions and produce constant silver nanoparticles. It was characterized and confirmed by various scientific techniques such as UV-vis spectrum, XRD, SEM, FT-IR and EDaX. Various concentrations (10, 50, 150, 200, and 250 ppm) of characterized nanoparticles were tested for larvicidal activity. The premier larval death was observed at 24 h of treatment on A. aegypti with LC50= 17.03 ppm, followed by C. quinquefasciatus with LC50= 14.89 ppm of methanol extract of O. canum and no death was noticed on A. stephensi. The LD90 value for A. aegypti and C. quinquefasciatus were 24.18 & 20.65 ppm respectively. Hence, the Ag nanoparticles produced from methanol leaf extract of O. canum retains efficiency to control A. aegypti and C. quinquefasciatus. Thus, it might support partially to replace the chemical insecticide which used against these vectors and might contribute to reduce environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document