Decay Rate of an Excited Atom in Dispersive and Dissipative Plasma Media

2011 ◽  
Vol 31 (2) ◽  
pp. 160-163 ◽  
Author(s):  
N. Pishbin ◽  
Fatemeh Dini ◽  
N. Alinejad
Keyword(s):  
2012 ◽  
Vol 31 (6) ◽  
pp. 562-565 ◽  
Author(s):  
Noushin Pishbin ◽  
Naser Alinejad

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Naser Alinejad ◽  
Noushin Pishbin

Investigation of spontaneous decay of an excited atom in dusty unmagnetized plasma is presented in this paper. The transverse contribution to the decay rate is normally associated with spontaneous emission. The rate of spontaneous emission can be obtained by Fermi’s golden rule. In this calculation, the transverse contribution to dielectric permittivity and Green function technique are used. Calculation of the decay rate of atoms is applicable to understand the particular structure of the vacuum state of the electromagnetic field.


2020 ◽  
pp. 27-33
Author(s):  
Boris A. Veklenko

Without using the perturbation theory, the article demonstrates a possibility of superluminal information-carrying signals in standard quantum electrodynamics using the example of scattering of quantum electromagnetic field by an excited atom.


1995 ◽  
Vol 32 (2) ◽  
pp. 45-52 ◽  
Author(s):  
H. Z. Sarikaya ◽  
A. M. Saatçi

Total coliform bacteria have been chosen as the indicator organism. Coliform die-away experiments have been carried out in unpolluted sea water samples collected at about 100 m off the coastline and under controlled environmental conditions. The samples were transformed into one litre clean glass beakers which were kept at constant temperature and were exposed to the solar radiation. The membrane filter technique was used for the coliform analysis. The temperature ranged from 20 to 40° C and the dilution ratios ranged from 1/50 to 1/200. Coliform decay rate in the light has been expressed as the summation of the coliform decay rate in the dark and the decay rate due to solar radiation. The solar radiation required for 90 percent coliform removal has been found to range from 17 cal/cm2 to 40 cal/cm2 within the temperature range of 25 to 30° C. Applying the linear regression analysis two different equations have been given for the high (I>10 cal/cm2.hour) and low solar intensity ranges in order to determine the coliform decay rate constant as a function of the solar intensity. T-90 values in the light have been found to follow log-normal distribution with a median T-90 value of 32 minutes. The corresponding T-90 values in the dark were found to be 70-80 times longer. Coliform decay rate in the dark has been correlated with the temperature.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Almendra Aragón ◽  
Ramón Bécar ◽  
P. A. González ◽  
Yerko Vásquez

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Kaustav Chakraborty ◽  
Debajyoti Dutta ◽  
Srubabati Goswami ◽  
Dipyaman Pramanik

Abstract We study the physics potential of the long-baseline experiments T2HK, T2HKK and ESSνSB in the context of invisible neutrino decay. We consider normal mass ordering and assume the state ν3 as unstable, decaying into sterile states during the flight and obtain constraints on the neutrino decay lifetime (τ3). We find that T2HK, T2HKK and ESSνSB are sensitive to the decay-rate of ν3 for τ3/m3 ≤ 2.72 × 10−11s/eV, τ3/m3 ≤ 4.36 × 10−11s/eV and τ3/m3 ≤ 2.43 × 10−11s/eV respectively at 3σ C.L. We compare and contrast the sensitivities of the three experiments and specially investigate the role played by the mixing angle θ23. It is seen that for experiments with flux peak near the second oscillation maxima, the poorer sensitivity to θ23 results in weaker constraints on the decay lifetime. Although, T2HKK has one detector close to the second oscillation maxima, having another detector at the first oscillation maxima results in superior sensitivity to decay. In addition, we find a synergy between the two baselines of the T2HKK experiment which helps in giving a better sensitivity to decay for θ23 in the higher octant. We discuss the octant sensitivity in presence of decay and show that there is an enhancement in sensitivity which occurs due to the contribution from the survival probability Pμμ is more pronounced for the experiments at the second oscillation maxima. We also obtain the combined sensitivity of T2HK+ESSνSB and T2HKK+ESSνSB as τ3/m3 ≤ 4.36 × 10−11s/eV and τ3/m3 ≤ 5.53 × 10−11s/eV respectively at 3σ C.L.


Sign in / Sign up

Export Citation Format

Share Document