Thermodynamic Anomalies of Small Quantum Systems Within a New Approach to Statistical Physics

2014 ◽  
Vol 177 (3-4) ◽  
pp. 91-98 ◽  
Author(s):  
Li Zhou ◽  
Hui-yi Tang ◽  
Yong-li Ma
2021 ◽  
Vol 13 (13) ◽  
pp. 2604
Author(s):  
Patrick Osei Darko ◽  
Margaret Kalacska ◽  
J. Pablo Arroyo-Mora ◽  
Matthew E. Fagan

Hyperspectral remote sensing across multiple spatio-temporal scales allows for mapping and monitoring mangrove habitats to support urgent conservation efforts. The use of hyperspectral imagery for assessing mangroves is less common than for terrestrial forest ecosystems. In this study, two well-known measures in statistical physics, Mean Information Gain (MIG) and Marginal Entropy (ME), have been adapted to high spatial resolution (2.5 m) full range (Visible-Shortwave-Infrared) airborne hyperspectral imagery. These two spectral complexity metrics describe the spatial heterogeneity and the aspatial heterogeneity of the reflectance. In this study, we compare MIG and ME with surface reflectance for mapping mangrove extent and species composition in the Sierpe mangroves in Costa Rica. The highest accuracy for separating mangroves from forest was achieved with visible-near infrared (VNIR) reflectance (98.8% overall accuracy), following by shortwave infrared (SWIR) MIG and ME (98%). Our results also show that MIG and ME can discriminate dominant mangrove species with higher accuracy than surface reflectance alone (e.g., MIG–VNIR = 93.6% vs. VNIR Reflectance = 89.7%).


1996 ◽  
Vol 77 (18) ◽  
pp. 3763-3766 ◽  
Author(s):  
Naama Brenner ◽  
Shmuel Fishman

2004 ◽  
Vol 72 (10) ◽  
pp. 1294-1302 ◽  
Author(s):  
D. P. Landau ◽  
Shan-Ho Tsai ◽  
M. Exler

1979 ◽  
Vol 20 (12) ◽  
pp. 3081-3094 ◽  
Author(s):  
S. R. Gautam ◽  
T. N. Sherry ◽  
E. C. G. Sudarshan

2020 ◽  
Vol 19 (9) ◽  
Author(s):  
Philipp Niemann ◽  
Robert Wille ◽  
Rolf Drechsler

Abstract Quantum systems provide a new way of conducting computations based on the so-called qubits. Due to the potential for significant speed-ups, this field received significant research attention in recent years. The Clifford+T library is a very promising and popular gate library for these kinds of computations. Unlike other libraries considered so far, it consists of only a small number of gates for all of which robust, fault-tolerant realizations are known for many technologies that seem to be promising for large-scale quantum computing. As a consequence, (logic) synthesis of Clifford+T quantum circuits became an important research problem. However, previous work in this area has several drawbacks: Corresponding approaches are either only applicable to very small quantum systems or lead to circuits that are far from being optimal. The latter is mainly caused by the fact that current synthesis realizes the desired circuit by a local, i.e., column-wise, consideration of the underlying unitary transformation matrix to be synthesized. In this paper, we analyze the conceptual drawbacks of this approach and propose to overcome them by taking a global view of the matrices and perform a separation of concerns regarding individual synthesis steps. We precisely describe a corresponding algorithm as well as its efficient implementation on top of decision diagrams. Experimental results confirm the resulting benefits and show improvements of up to several orders of magnitudes in costs compared to previous work.


2019 ◽  
Vol 1 (1) ◽  
pp. 50-62 ◽  
Author(s):  
Marcel Goihl ◽  
Mathis Friesdorf ◽  
Albert H. Werner ◽  
Winton Brown ◽  
Jens Eisert

The phenomenon of many-body localized (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations from quantum statistical mechanics. What is more, recent seminal experimental developments with ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body localized systems into the realm of physical systems that can be measured with high accuracy. In this work, we introduce experimentally accessible witnesses that directly probe distinct features of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight measurements, identifying witnesses based on fluctuations, density–density correlators, densities, and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction with tensor network and exact simulations, showing the effectiveness of the tools for realistic models.


2020 ◽  
Vol 117 (20) ◽  
pp. 10727-10732
Author(s):  
Yu-Chen Cheng ◽  
Sara Mikaelsson ◽  
Saikat Nandi ◽  
Lisa Rämisch ◽  
Chen Guo ◽  
...  

When small quantum systems, atoms or molecules, absorb a high-energy photon, electrons are emitted with a well-defined energy and a highly symmetric angular distribution, ruled by energy quantization and parity conservation. These rules are based on approximations and symmetries which may break down when atoms are exposed to ultrashort and intense optical pulses. This raises the question of their universality for the simplest case of the photoelectric effect. Here we investigate photoionization of helium by a sequence of attosecond pulses in the presence of a weak infrared laser field. We continuously control the energy of the photoelectrons and introduce an asymmetry in their emission direction, at variance with the idealized rules mentioned above. This control, made possible by the extreme temporal confinement of the light–matter interaction, opens a road in attosecond science, namely, the manipulation of ultrafast processes with a tailored sequence of attosecond pulses.


Sign in / Sign up

Export Citation Format

Share Document