thermodynamic anomalies
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiang Zhou ◽  
Guidi Zhou ◽  
Hailong Liu ◽  
Zhuhua Li ◽  
Xuhua Cheng

Oceanic mesoscale eddies are associated with large thermodynamic anomalies, yet so far they are most commonly studied in terms of surface temperature and in the sense of composite mean. Here we employ an objective eddy identification and tracking algorithm together with a novel matching and filling procedure to more thoroughly examine eddy-induced thermodynamic anomalies in the North Pacific, their relationship with eddy amplitude (SSH), and the percentage of variability they explain on various timescales from submonthly to interannual. The thermodynamic anomalies are investigated in terms of sea surface temperature (SST), isothermal layer depth (ITD), and upper ocean heat content (HCT). Most eddies are weak in amplitude and are associated with small thermodynamic anomalies. In the sense of composite mean, anticyclonic eddies are generally warm eddies with deeper isothermal layer and larger heat content, and the reverse is true for cyclonic eddies. A small fraction of eddies, most probably subsurface eddies, exhibits the opposite polarities. Linear relationships with eddy amplitude are found for each of the thermodynamic parameters but with different level of scatter and seasonality. HCT-amplitude relation scatters the least and has the smallest seasonal difference, ITD-amplitude relation has the largest scatter and seasonality, while SST-amplitude relation is in between. For the Kuroshio and Oyashio Extension region, the most eddy-rich region in the North Pacific, eddies are responsible for over 50% of the total SSH variability up to the intra-seasonal scale, and ITD and HCT variability up to interannual. Eddy-induced SST variability is the highest along the Oyashio Extension Front on the order of 40–60% on submonthly scales. These results highlight the role of mesoscale eddies in ocean thermodynamic variability and in air-sea interaction.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1336
Author(s):  
Carlo Andrea Massa ◽  
Francesco Puosi ◽  
Antonio Tripodo ◽  
Dino Leporini

The vibrational dynamics of a model polymer glass is studied by Molecular Dynamics simulations. The focus is on the “soft” monomers with high participation to the lower-frequency vibrational modes contributing to the thermodynamic anomalies of glasses. To better evidence their role, the threshold to qualify monomers as soft is made severe, allowing for the use of systems with limited size. A marked tendency of soft monomers to form quasi-local clusters involving up to 15 monomers is evidenced. Each chain contributes to a cluster up to about three monomers and a single cluster involves a monomer belonging to about 2–3 chains. Clusters with monomers belonging to a single chain are rare. The open and tenuous character of the clusters is revealed by their fractal dimension df<2. The inertia tensor of the soft clusters evidences their strong anisotropy in shape and remarkable linear correlation of the two largest eigenvalues. Owing to the limited size of the system, finite-size effects, as well as dependence of the results on the adopted polymer length, cannot be ruled out.


2020 ◽  
Vol 117 (43) ◽  
pp. 26591-26599 ◽  
Author(s):  
Rui Shi ◽  
Hajime Tanaka

The origin of water’s anomalies has been a matter of long-standing debate. A two-state model, dating back to Röntgen, relies on the dynamical coexistence of two types of local structures—locally favored tetrahedral structure (LFTS) and disordered normal-liquid structure (DNLS)—in liquid water. Phenomenologically, this model not only explains water’s thermodynamic anomalies but also can rationalize the existence of a liquid–liquid critical point (LLCP) if there is a cooperative formation of LFTS. We recently found direct evidence for the coexistence of LFTS and DNLS in the experimental structure factor of liquid water. However, the existence of the LLCP and its impact on water’s properties has remained elusive, leaving the origin of water’s anomalies unclear. Here we propose a unique strategy to locate the LLCP of liquid water. First, we make a comprehensive analysis of a large set of experimental structural, thermodynamic, and dynamic data based on our hierarchical two-state model. This model predicts that the two thermodynamic and dynamical fluctuation maxima lines should cross at the LLCP if it exists, which we confirm by hundred-microsecond simulations for model waters. Based on recent experimental results of the compressibility and diffusivity measurements in the no man’s land, we reveal that the two lines cross around 184 K and 173 MPa for real water, suggesting the presence of the LLCP around there. Nevertheless, we find that the criticality is almost negligible in the experimentally accessible region of liquid water because it is too far from the LLCP. Our findings would provide a clue to settle the long-standing debate.


2020 ◽  
Vol 21 (19) ◽  
pp. 7269
Author(s):  
Francesco Mallamace ◽  
Giuseppe Mensitieri ◽  
Domenico Mallamace ◽  
Martina Salzano de Luna ◽  
Sow-Hsin Chen

Liquid water is considered to be a peculiar example of glass forming materials because of the possibility of giving rise to amorphous phases with different densities and of the thermodynamic anomalies that characterize its supercooled liquid phase. In the present work, literature data on the density of bulk liquid water are analyzed in a wide temperature-pressure range, also including the glass phases. A careful data analysis, which was performed on different density isobars, made in terms of thermodynamic response functions, like the thermal expansion αP and the specific heat differences CP−CV, proves, exclusively from the experimental data, the thermodynamic consistence of the liquid-liquid transition hypothesis. The study confirms that supercooled bulk water is a mixture of two liquid “phases”, namely the high density (HDL) and the low density (LDL) liquids that characterize different regions of the water phase diagram. Furthermore, the CP−CV isobars behaviors clearly support the existence of both a liquid–liquid transition and of a liquid–liquid critical point.


2020 ◽  
Author(s):  
Yingmo Zhu

&lt;p&gt;This study examines how the thermodynamic anomaly in Arabian Sea (AS)&amp;#8211;Bay of Bangle (BOB) relates to Yunnan precipitation in the rainy season. The observational diagnosis basing on data sets of atmospheric circulation reanalysis, precipitation from 124 stations in Yunnan and outgoing longwave radiation indicates that, when the thermodynamic anomaly in the AS&amp;#8211;BOB is weaker during rainy-season, an anomalous anticyclone will control the AS&amp;#8211;BOB. An anomalous cyclone in Yunnan resulted from the anomalous anticyclone in the AS&amp;#8211;BOB induces anomalous water vapor converging with anomalous cold air in the same region. As a result, heavier-than-normal precipitation occurs in Yunnan in rainy-season. When the thermodynamic anomaly in the AS&amp;#8211;BOB is stronger, the opposite configuration of anomalous circulation will cause less-than-normal precipitation in Yunnan. The results of several numerical experiments obtained from a linear baroclinic model support the key physical processes revealed in the observational diagnosis.&lt;/p&gt;


2019 ◽  
Vol 100 (13) ◽  
Author(s):  
Hua Y. Geng ◽  
Q. Wu ◽  
Miriam Marqués ◽  
Graeme J. Ackland

2019 ◽  
Vol 126 (3) ◽  
pp. 035110
Author(s):  
Jihui Nie ◽  
Sylwester Porowski ◽  
Pawel Keblinski

2019 ◽  
Vol 151 (2) ◽  
pp. 024502
Author(s):  
Domagoj Fijan ◽  
Mark Wilson

Sign in / Sign up

Export Citation Format

Share Document