scholarly journals Controlling photoionization using attosecond time-slit interferences

2020 ◽  
Vol 117 (20) ◽  
pp. 10727-10732
Author(s):  
Yu-Chen Cheng ◽  
Sara Mikaelsson ◽  
Saikat Nandi ◽  
Lisa Rämisch ◽  
Chen Guo ◽  
...  

When small quantum systems, atoms or molecules, absorb a high-energy photon, electrons are emitted with a well-defined energy and a highly symmetric angular distribution, ruled by energy quantization and parity conservation. These rules are based on approximations and symmetries which may break down when atoms are exposed to ultrashort and intense optical pulses. This raises the question of their universality for the simplest case of the photoelectric effect. Here we investigate photoionization of helium by a sequence of attosecond pulses in the presence of a weak infrared laser field. We continuously control the energy of the photoelectrons and introduce an asymmetry in their emission direction, at variance with the idealized rules mentioned above. This control, made possible by the extreme temporal confinement of the light–matter interaction, opens a road in attosecond science, namely, the manipulation of ultrafast processes with a tailored sequence of attosecond pulses.

2021 ◽  
Vol 255 ◽  
pp. 11006
Author(s):  
Jean-François Hergott ◽  
Hugo J. B. Marroux ◽  
Rodrigo Lopez-Martens ◽  
Fabrice Réau ◽  
Fabien Lepetit ◽  
...  

Generating high-energy few-cycle pulses is key in the study of light-matter interaction in the regime of high field physics. Attosecond science possess the necessary time resolution to study the underlying fundamental processes but requires repetitions rates on the order the kilohertz and stabilization of the Carrier-Envelope Phase. We present here a post-compression stage delivering 3.8fs pulses with 2.5mJ coupled to a Ti: Sa based 1 kHz TW-class laser which can deliver 17.8fs pulses with 350mrad shot to shot CEP noise. This is the first step towards high-energy few-cycle post-compression of the FAB laser at ATTOLAB-Orme.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 610
Author(s):  
Abdelmalek Taoutioui ◽  
Hicham Agueny

High-order harmonic generation is a nonlinear process that converts the gained energy during light-matter interaction into high-frequency radiation, thus resulting in the generation of coherent attosecond pulses in the XUV and soft x-ray regions. Here, we propose a control scheme for enhancing the efficiency of HHG process induced by an intense near-infrared (NIR) multi-cycle laser pulse. The scheme is based on introducing an infrared (IR) single-cycle pulse and exploiting its characteristic feature that manifests by a non-zero displacement effect to generate high-photon energy. The proposed scenario is numerically implemented on the basis of the time-dependent Schrödinger equation. In particular, we show that the combined pulses allow one to produce high-energy plateaus and that the harmonic cutoff is extended by a factor of 3 compared to the case with the NIR pulse alone. The emerged high-energy plateaus is understood as a result of a vast momentum transfer from the single-cycle field to the ionized electrons while travelling in the NIR field, thus leading to high-momentum electron recollisions. We also identify the role of the IR single-cycle field for controlling the directionality of the emitted electrons via the IR-field induced electron displacement effect. We further show that the emerged plateaus can be controlled by varying the relative carrier-envelope phase between the two pulses as well as the wavelengths. Our findings pave the way for an efficient control of light-matter interaction with the use of assisting femtosecond single-cycle fields.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Omar Di Stefano ◽  
Anton Frisk Kockum ◽  
Alessandro Ridolfo ◽  
Salvatore Savasta ◽  
Franco Nori

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this chapter we study with the tools developed in Chapter 3 the basic models that are the foundations of light–matter interaction. We start with Rabi dynamics, then consider the optical Bloch equations that add phenomenologically the lifetime of the populations. As decay and pumping are often important, we cover the Lindblad form, a correct, simple and powerful way to describe various dissipation mechanisms. Then we go to a full quantum picture, quantizing also the optical field. We first investigate the simpler coupling of bosons and then culminate with the Jaynes–Cummings model and its solution to the quantum interaction of a two-level system with a cavity mode. Finally, we investigate a broader family of models where the material excitation operators differ from the ideal limits of a Bose and a Fermi field.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 975-982
Author(s):  
Huanhuan Su ◽  
Shan Wu ◽  
Yuhan Yang ◽  
Qing Leng ◽  
Lei Huang ◽  
...  

AbstractPlasmonic nanostructures have garnered tremendous interest in enhanced light–matter interaction because of their unique capability of extreme field confinement in nanoscale, especially beneficial for boosting the photoluminescence (PL) signals of weak light–matter interaction materials such as transition metal dichalcogenides atomic crystals. Here we report the surface plasmon polariton (SPP)-assisted PL enhancement of MoS2 monolayer via a suspended periodic metallic (SPM) structure. Without involving metallic nanoparticle–based plasmonic geometries, the SPM structure can enable more than two orders of magnitude PL enhancement. Systematic analysis unravels the underlying physics of the pronounced enhancement to two primary plasmonic effects: concentrated local field of SPP enabled excitation rate increment (45.2) as well as the quantum yield amplification (5.4 times) by the SPM nanostructure, overwhelming most of the nanoparticle-based geometries reported thus far. Our results provide a powerful way to boost two-dimensional exciton emission by plasmonic effects which may shed light on the on-chip photonic integration of 2D materials.


2021 ◽  
Author(s):  
Xiaomin Zhao ◽  
Chenglin Du ◽  
Rong Leng ◽  
Li Li ◽  
Weiwei Luo ◽  
...  

Plasmon resonances with high-quality are of great importance in light emission control and light-matter interaction. Nevertheless, the inherent Ohmic and radiative losses usually hinder the plasmon performance of the metallic...


2021 ◽  
Vol 154 (10) ◽  
pp. 104109
Author(s):  
Derek S. Wang ◽  
Tomáš Neuman ◽  
Johannes Flick ◽  
Prineha Narang

2021 ◽  
Vol 7 (21) ◽  
pp. eabf8049
Author(s):  
Rui Su ◽  
Sanjib Ghosh ◽  
Timothy C. H. Liew ◽  
Qihua Xiong

Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize active nonlinear topological devices with immunity to defects. Topological exciton polaritons—half-light, half-matter quasiparticles with giant optical nonlinearity—represent a unique platform for active topological photonics. Previous demonstrations of exciton polariton topological insulators demand cryogenic temperatures, and their topological properties are usually fixed. Here, we experimentally demonstrate a room temperature exciton polariton topological insulator in a perovskite zigzag lattice. Polarization serves as a degree of freedom to switch between distinct topological phases, and the topologically nontrivial polariton edge states persist in the presence of onsite energy perturbations, showing strong immunity to disorder. We further demonstrate exciton polariton condensation into the topological edge states under optical pumping. These results provide an ideal platform for realizing active topological polaritonic devices working at ambient conditions, which can find important applications in topological lasers, optical modulation, and switching.


Sign in / Sign up

Export Citation Format

Share Document