Detection of Three-Dimensional Parameter of Defects for Gas Turbine Blades Based on Two-Dimensional Digital Radiographic Projective Imaging

2019 ◽  
Vol 38 (4) ◽  
Author(s):  
Lei Chen ◽  
Bing Li ◽  
Hao Zhou ◽  
Zhangbing Li ◽  
Zhongyu Shang
2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Ahmed Khalil ◽  
Hatem Kayed ◽  
Abdallah Hanafi ◽  
Medhat Nemitallah ◽  
Mohamed Habib

This work investigates the performance of film-cooling on trailing edge of gas turbine blades using unsteady three-dimensional numerical model adopting large eddy simulation (LES) turbulence scheme in a low Mach number flow regime. This study is concerned with the scaling parameters affecting effectiveness and heat transfer performance on the trailing edge, as a critical design parameter, of gas turbine blades. Simulations were performed using ANSYS-fluentworkbench 17.2. High quality mesh was adapted, whereas the size of cells adjacent to the wall was optimized carefully to sufficiently resolve the boundary layer to obtain insight predictions of the film-cooling effectiveness on a flat plate downstream the slot opening. Blowing ratio, density ratio, Reynolds number, and the turbulence intensity of the mainstream and coolant flow are optimally examined against the film-cooling effectiveness. The predicted results showed a great agreement when compared with the experiments. The results show a distinctive behavior of the cooling effectiveness with blowing ratio variation as it has a dip in vicinity of unity which is explained by the behavior of the vortex entrainment and momentum of coolant flow. The negative effect of the turbulence intensity on the cooling effectiveness is demonstrated as well.


2017 ◽  
Vol 22 (3) ◽  
pp. 95-101
Author(s):  
S.E. Jeon ◽  
C.W. Moon ◽  
S.H. Park ◽  
J.H. Sa ◽  
J.H. Shin

Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


2020 ◽  
Vol 12 (8) ◽  
pp. 1319
Author(s):  
Xiaofan Sun ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Liangjiang Zhou ◽  
Shuai Jiang

The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter space (forest height, Gaussian mean representing the strongest backscattered power elevation, and the corresponding standard deviation) to interpret the forest vertical structure. This paper establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically, the two-dimensional GVB model includes the following three cases: the Gaussian mean is located at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a constant volume profile. In the first two cases, only the forest height and the Gaussian standard deviation are variable. The above approximation operation generates a two-dimensional volume only coherence solution space on the complex plane. Based on the established two-dimensional GVB model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption. The proposed method improves the performance by 18.62% compared to the three-baseline Random Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong description ability.


Sign in / Sign up

Export Citation Format

Share Document