Application of Immobilized Laccase on Polyurethane Foam for Ex-Situ Polycyclic Aromatic Hydrocarbons Bioremediation

Author(s):  
Brayam Luiz Batista Perini ◽  
Naionara Ariete Daronch ◽  
Rodrigo Luiz Bitencourt ◽  
Andréa Lima dos Santos Schneider ◽  
Cristiano José de Andrade ◽  
...  
2020 ◽  
Vol 10 (11) ◽  
pp. 3684 ◽  
Author(s):  
Tahseen Sayara ◽  
Antoni Sánchez

Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.


Author(s):  
C. Fawole ◽  
S. J. Salami ◽  
D. A. Dashak ◽  
H. A. Chimezie-Nwosu

The ex situ study of vermiextraction of Acenaphthylene (AcPY), Benzo(e)pyrene (BeP) and Benzo(ghi)perylene (BP) form constructed vermiculture containing petroleum contaminated soil (8.00±0.01, 9.80±0.00 and 5.02±0.00 mg/kg respectively) and vermiaccumulation (AcPY, 1.05±0.00, BeP, 2.01±0.00 and BP, 1.73±0.00 mg/kg) by Esenia fetida squirms with mean vermiremoval efficiency of 100% while vermiconversions were AcPY, 86.88, BeP, 79.49 and BP, 65.54%. The identification and quantification of the 3 polycyclic aromatic hydrocarbons (3PAHs) were performed by GS/MD in accordance with analytical procedure of US. EPA 8270; 625. The bioengineered approach by E. fetida squirms in the vermiculture proved effective to detoxify and remove the persistent organic pollutants of the 3PAHs. The ex situ study of vermiextraction of Acenaphthylene (AcPY), Benzo(e)pyrene (BeP) and Benzo(ghi)perylene (BP) form constructed vermiculture containing petroleum contaminated soil (8.00±0.01, 9.80±0.00 and 5.02±0.00 mg/kg respectively) and vermiaccumulation (AcPY, 1.05±0.00, BeP, 2.01±0.00 and BP, 1.73±0.00 mg/kg) by Esenia fetida squirms with mean vermiremoval efficiency of 100% while vermiconversions were AcPY, 86.88, BeP, 79.49 and BP, 65.54%. The identification and quantification of the 3 polycyclic aromatic hydrocarbons (3PAHs) were performed by GS/MD in accordance with analytical procedure of US. EPA 8270; 625. The bioengineered approach by E. fetida squirms in the vermiculture proved effective to detoxify and remove the persistent organic pollutants of the 3PAHs.


2020 ◽  
Vol 31 (3) ◽  
pp. 14
Author(s):  
Ali A. Taha ◽  
Nahida J. Hameed ◽  
Farah Hamed Ali

Polycyclic aromatic hydrocarbons (PAHs) are recognized as a toxic, mutagenic and/or carcinogenic compounds, and their pollution of soil and aquifer is of increasing environmentally risk. Laccases (E.C. 1.10.3.2) are phenoloxidases catalyze the oxidation of PAHs in the presence of a mediator compound and hyacinth plant. In this study laccase from Trametes versicolor was immobilized into chitosan, and the potential to oxidize anthracene in the presence of 1-hydroxybenzotriazole (HBT) was examined. Results indicated that the immobilization enhanced the stability of laccase against temperature, pH, inhibitors and loading time compared with the other cases. The immobilized laccase-mediator system was as efficient as the free enzyme for oxidizing the tested PAHs. After 24h. of incubation, immobilized laccase–HBT showed a system oxidization more than immobilized laccase without (HBT) of PAHs; Chitosan with hyacinth plant and (HBT) resulted better conversion than chitosan with or without HBT. These results indicate a new chance for applying the immobilized laccase in bioremediation.


Sign in / Sign up

Export Citation Format

Share Document