scholarly journals Degradation of Anthracene by Immobilizing Laccase From Trametes Versicolor onto Chitosan Beads and Hyacinth Plant

2020 ◽  
Vol 31 (3) ◽  
pp. 14
Author(s):  
Ali A. Taha ◽  
Nahida J. Hameed ◽  
Farah Hamed Ali

Polycyclic aromatic hydrocarbons (PAHs) are recognized as a toxic, mutagenic and/or carcinogenic compounds, and their pollution of soil and aquifer is of increasing environmentally risk. Laccases (E.C. 1.10.3.2) are phenoloxidases catalyze the oxidation of PAHs in the presence of a mediator compound and hyacinth plant. In this study laccase from Trametes versicolor was immobilized into chitosan, and the potential to oxidize anthracene in the presence of 1-hydroxybenzotriazole (HBT) was examined. Results indicated that the immobilization enhanced the stability of laccase against temperature, pH, inhibitors and loading time compared with the other cases. The immobilized laccase-mediator system was as efficient as the free enzyme for oxidizing the tested PAHs. After 24h. of incubation, immobilized laccase–HBT showed a system oxidization more than immobilized laccase without (HBT) of PAHs; Chitosan with hyacinth plant and (HBT) resulted better conversion than chitosan with or without HBT. These results indicate a new chance for applying the immobilized laccase in bioremediation.

2020 ◽  
Vol 10 (11) ◽  
pp. 3684 ◽  
Author(s):  
Tahseen Sayara ◽  
Antoni Sánchez

Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.


2021 ◽  
Author(s):  
Krishnamoorthy Radhakrishnan ◽  
Anandarao Rajkumar ◽  
Nazeerkhan Akramkhan ◽  
Prakasheswar P. ◽  
Subbiah Krishnakumar ◽  
...  

Abstract The investigation aims to study the source and concentration of polycyclic aromatic hydrocarbon (PAHs) fractions in the surface sediments of selected estuaries of the southwest coast of Kerala India. The concentration of PAHs ranged from 0.47 to 126.64 ng/g. The estuarine sediments were enriched by HMW-PAHs and they are occupied nearly 93.76 % of the total concentration, followed by LMW-PAHs (LMW-PAH – 6.23%). The sum of surface sediment-associated PAH distribution was higher in the inner part of the estuary, especially at Anjuthengu and Kadinamkulam estuaries. The sediment grain size and distance of the sampling point from the coast are significantly playing an important role in the distribution of the PAHs. The ratio of LMW/HMW PAHs in this study indicating that the pyrolytic process is the chief source of PAHs in the estuarine sediments. The calculated total TEQ value ranged from 0.20 to 54.80 ng/g. A comparative study suggests that the obtained TEQ value was less than the other locations of India and worldwide.


Author(s):  
Brayam Luiz Batista Perini ◽  
Naionara Ariete Daronch ◽  
Rodrigo Luiz Bitencourt ◽  
Andréa Lima dos Santos Schneider ◽  
Cristiano José de Andrade ◽  
...  

2018 ◽  
Vol 83 (5) ◽  
pp. 549-559 ◽  
Author(s):  
Xin Wang ◽  
Yu Shi ◽  
Zi Ni ◽  
Zhao Li ◽  
Jia Bao

The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soils by laccase is reported. However, the low laccase activities of free laccase have limited its applications in environmental bioremediation. In this study, polluted soil was made with 3:1 volume ratio of soil to PAH solution. Subsequently, the adsorption?cross-link composite immobilization method was applied to immobilize laccase derived from fungi onto nylon net and chitosan, respectively. These two kinds of immobilized laccase were used in the degradation of pyrene (Pyr) and benzo[a]pyrene (BaP), and their degradation efficiencies under different temperature and pH conditions were investigated. Consequently, the optimal laboratory experimental parameters were determined as follows: first, compared with free laccase, the degradation rates of Pyr and BaP by immobilized laccase increased by around 10?30 %; second, the degradation efficiency of chitosan as a carrier of immobilized laccase was much better than that of nylon net as a carrier of the immobilized laccase; finally, when the temperature was set at 40?C and the pH was set at 4, the degradation efficiency achieved by immobilized laccase was the best.


2021 ◽  
Author(s):  
Irini Tsiodra ◽  
Kalliopi Tavernaraki ◽  
Aikaterini Bougiatioti ◽  
Georgios Grivas ◽  
Maria Apostolaki ◽  
...  

<p>Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants with proven mutagenic and carcinogenic potential that originate from incomplete combustion, and partition to fine particulate matter. Nitro-PAHs & oxy-PAHs are oxidation products of PAHs with increased toxicity compared to their parent members and may reveal useful information about the aging and oxidation processes of PAHs.</p><p>In this study, we investigate the seasonal profiles of 31 PAHs and select oxidized forms such as nitro PAHs & quinones in Athens, Greece to understand their sources, levels, toxicity and impacts. PAHs levels were found to be significantly higher during winter, particularly during intense pollution episodes, compared to the other seasons. Chemical markers linked to biomass burning (BB) emissions are found to correlate well with the total amount of PAHs (ΣPAHs) during wintertime, strongly indicating that BB emissions are a significant source of PAHs. Positive Matrix Factorization (PMF) analysis showed that more than 50% of ΣPAHs originate from BB emissions and that a “factor” (composed of a specific mixture of PAHs) characterizes biomass burning emissions – and can potentially be used as a tracer. Analysis of the PMF series suggests that BB aerosol is much more carcinogenic than the effects of gasoline and diesel combustion combined. Finally, the exposure impact during winter is 9 times higher compared with the other seasons.</p><p> Acknowledgements</p><p>This work has been funded by the European Research Council, CoG-2016 project PyroTRACH (726165) H2020-EU.1.1. – Excellent. We also acknowledge support by the “PANhellenic infrastructure for Atmospheric Composition and climatE change” (MIS 5021516) implemented under the Action “Reinforcement of the Research and Innovation Infrastructure ”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document