The effect of external and internal diffusion on the sorption of radioactive ions by reactive cloth filter: Part I

2011 ◽  
Vol 291 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Sameh H. Othman ◽  
Azza H. Ali ◽  
Nabil A. Mansour ◽  
Bahgat E. El-Anadouli
2004 ◽  
Vol 9 (2) ◽  
pp. 139-144 ◽  
Author(s):  
J. Kulys

A model of biosensor containing three immobilized enzymes utilizing consecutive substrate conversion in the chain was developed. The modeling was performed at an internal diffusion limitation and a steadystate condition. The calculations showed that significant response of biosensors was produced if diffusion modules were larger than 1 for all enzyme reactions. Due to diffusion limitation the apparent stability of biosensor response increased many times in comparison to stability of the most labile enzyme of the chain.


2008 ◽  
Vol 396-398 ◽  
pp. 569-572
Author(s):  
Fumio Watari ◽  
Shigeaki Abe ◽  
I.D. Rosca ◽  
Atsuro Yokoyama ◽  
Motohiro Uo ◽  
...  

Nanoparticles may invade directly into the internal body through the respiratory or digestive system and diffuse inside body. The behavior of nanoparticles in the internal body is also essential to comprehend for the realization of DDS. Thus it is necessary to reveal the internal dynamics for the proper treatments and biomedical applications of nanoparticles. In the present study the plural methods with different principles such as X-ray scanning analytical microscope (XSAM), MRI and Fluorescent microscopy were applied to enable the observation of the internal diffusion of micro/nanoparticles in the (1) whole body level, (2) inner organ level and (3) tissue and intracellular level. Chemical analysis was also done by ICP-AES for organs and compared with the results of XSAM mapping.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helena Bestová ◽  
Jules Segrestin ◽  
Klaus von Schwartzenberg ◽  
Pavel Škaloud ◽  
Thomas Lenormand ◽  
...  

AbstractThe Metabolic Scaling Theory (MST), hypothesizes limitations of resource-transport networks in organisms and predicts their optimization into fractal-like structures. As a result, the relationship between population growth rate and body size should follow a cross-species universal quarter-power scaling. However, the universality of metabolic scaling has been challenged, particularly across transitions from bacteria to protists to multicellulars. The population growth rate of unicellulars should be constrained by external diffusion, ruling nutrient uptake, and internal diffusion, operating nutrient distribution. Both constraints intensify with increasing size possibly leading to shifting in the scaling exponent. We focused on unicellular algae Micrasterias. Large size and fractal-like morphology make this species a transitional group between unicellular and multicellular organisms in the evolution of allometry. We tested MST predictions using measurements of growth rate, size, and morphology-related traits. We showed that growth scaling of Micrasterias follows MST predictions, reflecting constraints by internal diffusion transport. Cell fractality and density decrease led to a proportional increase in surface area with body mass relaxing external constraints. Complex allometric optimization enables to maintain quarter-power scaling of population growth rate even with a large unicellular plan. Overall, our findings support fractality as a key factor in the evolution of biological scaling.


Sign in / Sign up

Export Citation Format

Share Document