Negative muon induced elemental analysis by muonic X-ray and prompt gamma-ray measurements

2016 ◽  
Vol 309 (1) ◽  
pp. 65-69 ◽  
Author(s):  
K. Ninomiya ◽  
M. Inagaki ◽  
M. K. Kubo ◽  
T. Nagatomo ◽  
W. Higemoto ◽  
...  
2017 ◽  
Vol 888 ◽  
pp. 534-537
Author(s):  
Mohd Fitri Abdul Rahman ◽  
Hanafi Ithnin ◽  
Lahasen Dahing

Elemental studies of any samples for example concrete are important for better characterization and inspection. Currently, many techniques have been applied such as x-ray, gamma-ray and etc. However further analysis is good to know without destroying the samples. Furthermore, simulations of any samples with Prompt Gamma Neutron Activation Analysis (PGNAA) are useful to experimentalist. In this study, Monte Carlo technique was used with two different type of software. The results were successful on elemental analysis from both techniques.


2014 ◽  
Vol 789 (2) ◽  
pp. 145 ◽  
Author(s):  
You-Dong Hu ◽  
En-Wei Liang ◽  
Shao-Qiang Xi ◽  
Fang-Kun Peng ◽  
Rui-Jing Lu ◽  
...  

2008 ◽  
Vol 278 (3) ◽  
pp. 647-651 ◽  
Author(s):  
M. Segawa ◽  
H. Matsue ◽  
Y. Sekiya ◽  
S. Yamada ◽  
T. Shinohara ◽  
...  

2017 ◽  
Vol 12 (S333) ◽  
pp. 170-171
Author(s):  
I. I. Racz ◽  
Z. Bagoly ◽  
L. V. Tóth ◽  
L. G. Balázs ◽  
I. Horvath ◽  
...  

AbstractGamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.


2019 ◽  
Vol 490 (2) ◽  
pp. 2822-2837 ◽  
Author(s):  
Houri Ziaeepour

ABSTRACT We use published data in radio, optical, and X-ray bands to analyse and model afterglows of GW/GRB 170817A. Our analysis is based on a phenomenological gamma-ray burst generator model, which we previously used to study the prompt gamma-ray emission of this important transient. We find a multicomponent model and a few of its variants that are consistent with broad-band ∼1 yr observations of afterglows, once the contribution of kilonova in optical/IR band is taken into account. Considering beaming and off-axis view of relativistic outflows, we interpret the components of the model as approximately presenting the profile of a relativistic structured jet with a rapidly declining Lorentz factor from our line of sight, where it had a Lorentz factor of $\mathcal {O}(100)$, to outer boundaries, where it became a mildly relativistic cocoon with a relative velocity to light of ∼0.4–0.97. Properties of the ultra-relativistic core of the jet obtained here are consistent with conclusions from analysis of the prompt gamma-ray emission. In particular, our results show that after prompt internal shocks the remnant of the jet retained in some extent its internal collimation and coherence. Slow rise of the afterglows can be associated to low density of circumburst material and low column density of the jet. The long distance of external shocks from the merger, which could have been in part responsible for extensive thinning of the jet through expansion and energy dissipation before occurrence of external shocks, is responsible for the peak of emission being at ≳110 d after the merger. We discuss implications of these observations for origin and properties of circumburst material around binary neutron stars. This analysis confirms our previous results showing that an outflow with a Lorentz factor of ∼2–5 cannot explain observed afterglows without an additional X-ray source or significant absorption of optical/IR photons.


2012 ◽  
Vol 22 (03n04) ◽  
pp. 259-269 ◽  
Author(s):  
RAJBIR KAUR ◽  
A. KUMAR ◽  
B. P. MOHANTY ◽  
MUMTAZ OSWAL ◽  
NAVNEET KAUR ◽  
...  

Water is the most important source of minerals for both human beings and animals. But at the same time, water is also a source of disease due to the contamination of various elements. Therefore, knowledge of the elemental content of water is important. In this work, water samples were collected from areas around Chandigarh and Bathinda district, Panjab, India. Proton-induced X-ray emission (PIXE) and proton-induced gamma-ray emission (PIGE) techniques were used for the determination of heavy and light trace elements, respectively, in wide varieties of water samples. A large number of elements, namely F, Na, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, As, Pb , and U were detected in the samples and results are discussed.


2007 ◽  
Vol 22 (2) ◽  
pp. 146-151 ◽  
Author(s):  
John R. Sieber ◽  
Elizabeth A. Mackey ◽  
Anthony F. Marlow ◽  
Rick Paul ◽  
Ryan Martin

The value assignment of candidate Standard Reference Material (SRM®) 57b Silicon Metal provided an opportunity to develop an alkali reaction procedure as a precursor to borate fusion for the preparation of test specimens from the metal powder for X-ray fluorescence spectrometry (XRF). Suggested for this purpose by Blanchette in a 2002 Advances in X-ray Analysis article [45, 415–420 (2002)], the alkali reaction uses LiOH∙H2O to convert Si to Li2SiO3. Lithium silicate is fused with lithium borate flux without damage to platinum ware. Once specimens are fused and cast as beads, calibration standards are prepared to closely match the compositions of the specimens, allowing a linear calibration for each analyte. The XRF method yields results that are directly traceable to the mole through NIST SRM spectrometric solutions. The method was validated in two ways. First, the reaction was used on older SRMs for Si metal: SRM 57 and SRM 57a. Second, XRF results for candidate SRM 57b were compared to results obtained using prompt gamma-ray activation analysis (PGAA) and inductively coupled plasma optical emission spectrometry (ICPOES). Bias tests show the XRF results are accurate for the elements Al, S, Ca, Ti, Cr, Mn, Ni, Cu, and Zr. Levels of S, Ca, Cr, and Cu in candidate SRM 57b are near the limits of quantification of the borate fusion method. Iron results may be subject to a low bias. Phosphorus is not quantitatively retained during the alkali reaction and borate fusion. These elements, plus B, which cannot be determined after borate fusion, are listed in manufacturing specifications for Si metal.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Rachid Ouyed ◽  
Denis Leahy ◽  
Jan Staff ◽  
Brian Niebergal

If a quark-nova occurs inside a collapsar, the interaction between the quark-nova ejecta (relativistic iron-rich chunks) and the collapsar envelope leads to features indicative of those observed in Gamma Ray Bursts. The quark-nova ejecta collides with the stellar envelope creating an outward moving cap (Γ∼1–10) above the polar funnel. Prompt gamma-ray burst emission from internal shocks in relativistic jets (following accretion onto the quark star) becomes visible after the cap becomes optically thin. Model features include (i) precursor activity (optical, X-ray,γ-ray), (ii) promptγ-ray emission, and (iii) afterglow emission. We discuss SN-less long duration GRBs, short hard GRBs (including association and nonassociation with star forming regions), dark GRBs, the energetic X-ray flares detected in Swift GRBs, and the near-simultaneous optical andγ-ray prompt emission observed in GRBs in the context of our model.


Sign in / Sign up

Export Citation Format

Share Document