Microwave absorption study of low-density composites of barium hexaferrite and carbon black in X-band

2021 ◽  
Vol 98 (2) ◽  
pp. 351-363
Author(s):  
Shivanshu Goel ◽  
Avesh Garg ◽  
Himangshu Bhusan Baskey ◽  
Sachin Tyagi
2020 ◽  
Vol 7 (1) ◽  
pp. 016109 ◽  
Author(s):  
Shivanshu Goel ◽  
Avesh Garg ◽  
Raju Kumar Gupta ◽  
Ashish Dubey ◽  
N Eswara Prasad ◽  
...  

2018 ◽  
Vol 929 ◽  
pp. 109-115 ◽  
Author(s):  
Erfan Handoko ◽  
Iwan Sugihartono ◽  
Mangasi Alion Marpaung ◽  
Maulana Randa ◽  
Mudrik Alaydrus ◽  
...  

Microwave absorption characteristics of double layer of barium hexaferrite attached on the silica to from a composite on the basis of wave propagation theory have been investigated. Barium hexaferrite, BaFe12O19, was synthesized through ceramic method from stoichiometric mixtures of BaCO3 and Fe2O3 as precursors. The mixture was pelletized under the pressure of 10 MPa and sintered at 1100 °C for 5 hours. Silica in the forms of powder was purified by using HCl. The crystal structure of the samples was characterized using X-ray diffraction (XRD), microstructure was examined using scanning electron microscope (SEM), hysteresis curves recorded by PERMAGRAPH techniques, whereas the microwave absorbing properties for X-band was recorded using a vector network analyzer (VNA). Relative complex permeability and permittivity, and reflection loss values were calculated at given thickness according to transmittance line theory within the range 8.2–12.4 GHz. Based on this study, the layer dimension and frequency that results in low reflection loss can be estimated from the material properties of the barium hexaferrite/silica composite material.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Sukanta Das ◽  
G. C. Nayak ◽  
S. K. Sahu ◽  
P. C. Routray ◽  
A. K. Roy ◽  
...  

In this report, we demonstrate microwave absorption properties of barium hexaferrite, doped barium hexaferrite, titanium dioxide and conducting carbon black based RADAR absorbing material for stealth application. Double-layer absorbers are prepared with a top layer consisting of 30% hexaferrite and 10% titanium dioxide while the bottom layer composed of 30% hexaferrite and 10% conducting carbon black, embedded in chloroprene matrix. The top and bottom layers are prepared as impedance matching layer and conducting layer, respectively, with a total thickness of 2 mm. Microwave absorption properties of all the composites were analyzed in X-band region. Maximum reflection loss of −32 dB at 10.64 GHz was observed for barium hexaferrite based double-layer absorber whereas for doped barium hexaferrite based absorber the reflection loss was found to be −29.56 dB at 11.7 GHz. A consistence reflection loss value (>−24 dB) was observed for doped barium hexaferrite based RADAR absorbing materials within the entire bandwidth.


Sign in / Sign up

Export Citation Format

Share Document