Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process

2009 ◽  
Vol 100 (2) ◽  
pp. 529-535 ◽  
Author(s):  
H. Waqas ◽  
A. H. Qureshi
2008 ◽  
Vol 22 (18n19) ◽  
pp. 3153-3158 ◽  
Author(s):  
M. R. BARATI ◽  
S. A. SEYYED EBRAHIMI ◽  
A. BADIEI

In this research a sol-gel auto-combustion route has been proposed to synthesize nickel-zinc ferrite nanocrystalline powder, using metal nitrates, citric acid as fuel and ammonia as pH adjusting agent. The influence of pH value of the solution on phase evolution, crystallite size and morphology of as-burnt powders were investigated by XRD, SEM and TEM techniques. The results revealed that with pH=7 the single phase nickel-zinc ferrite nanocrystalline powders with crystallite size of about 27nm were formed directly after auto combustion process.


2012 ◽  
Vol 26 (26) ◽  
pp. 1250141 ◽  
Author(s):  
Y. B. HAN ◽  
J. SHA ◽  
L. N. SUN ◽  
Q. TANG ◽  
Q. LU ◽  
...  

Sm (Co or/and Zn) substituted nanocrystalline barium hexaferrites were synthesized by the sol–gel auto-combustion process, then X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to characterize and discuss the phase composition and the magnetic properties of the as-prepared barium hexaferrites. All results showed that the phase composition and magnetic properties were closely related to the doping elements and x. Owing to hyperfine field, canting spin, magnetic dilution and impurity phases, the saturation magnetization (Ms) of all samples increased firstly, and then decreased. Considering the crystallization, the magnetocrystalline anisotropy and the ions occupancy, the doping elements and x critically affected the coercivity (Hc). Compared the magnetic properties of all the samples, it is concluded that Zn 2+ and Co 2+ influenced each other and Zn 2+ occupied 4f2 sites prior to Co 2+, which led to the increase of Ms and the decrease of Hc.


2007 ◽  
Vol 44 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Jun-Gang Hou ◽  
Yuan-Fang Qu ◽  
Wei-Bing Ma ◽  
Qing-Chi Sun

2009 ◽  
Vol 66 ◽  
pp. 104-107 ◽  
Author(s):  
Ying Dai ◽  
Yao Sun ◽  
Wen Chen

Willemite ceramics (Zn2SiO4) possess excellent millimeter-wave dielectric properties, but it also has a high sintering temperature above 1300°C by traditional solid-state reaction and relatively large negative τf value. Zn2SiO4 nanoparticles synthesized by Sol–Gel method were used to improve the sintering and dielectric properties of the Zn2SiO4 ceramics. Using the nanoparticles, Zn2SiO4 ceramics can be sintered at a low temperature, 1150°C and exhibited improved microwave dielectric properties of εr =6.62, Q × f=24500 GHz, τf =-59ppm/°C. By adding TiO2 with high positive τf value (+450 ppm/°C) and CuO as sintering aid, near zero τf value and low sintering temperature can be achieved. With 11wt% of TiO2 and 5 wt% of CuO, an εr value of 9.3, a Q × f value of 12200GHz and a τf value of -11 ppm/°C were obtained at 1000°C, confirming the promising potential of the CuO-added TiO2-Zn2SiO4 ceramics as candidate materials for low–temperature cofired ceramic (LTCC) devices.


Sign in / Sign up

Export Citation Format

Share Document