Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy

2014 ◽  
Vol 120 (1) ◽  
pp. 679-687 ◽  
Author(s):  
Hong-Liang Lin ◽  
Gang-Chun Zhang ◽  
Shan-Yang Lin
Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7185
Author(s):  
Oliver Gould ◽  
Natalia Drabińska ◽  
Norman Ratcliffe ◽  
Ben de Lacy Costello

Mass spectrometry (MS) is an analytical technique that can be used for various applications in a number of scientific areas including environmental, security, forensic science, space exploration, agri-food, and numerous others. MS is also continuing to offer new insights into the proteomic and metabolomic fields. MS techniques are frequently used for the analysis of volatile compounds (VCs). The detection of VCs from human samples has the potential to aid in the diagnosis of diseases, in monitoring drug metabolites, and in providing insight into metabolic processes. The broad usage of MS has resulted in numerous variations of the technique being developed over the years, which can be divided into hyphenated and real-time MS techniques. Hyphenated chromatographic techniques coupled with MS offer unparalleled qualitative analysis and high accuracy and sensitivity, even when analysing complex matrices (breath, urine, stool, etc.). However, these benefits are traded for a significantly longer analysis time and a greater need for sample preparation and method development. On the other hand, real-time MS techniques offer highly sensitive quantitative data. Additionally, real-time techniques can provide results in a matter of minutes or even seconds, without altering the sample in any way. However, real-time MS can only offer tentative qualitative data and suffers from molecular weight overlap in complex matrices. This review compares hyphenated and real-time MS methods and provides examples of applications for each technique for the detection of VCs from humans.


2019 ◽  
Author(s):  
ICP IBCP Multiparametric Microscopy Facility ◽  
Oleg Gradov

The problem of compatibilities of fluorescence techniques and polymer chips is resolved (as a part of the general chip optics problem) using microscopic investigations of polymer chip transparency in some different textural variances and microfluorimetric measurements of fluorescent dyes in the chip geometry. The problem of the soil chip prototyping is solved using 3D-printing based on some biocompatible and, so possible, biodegradable polymers. The basic complexity of experimental data is provided in the tables placed in the general article text. Is it possible to create multiparametric analytical technique for synchronous biocompatible soil microbiome analysis and monitoring? It is a general question for the real time environmental control. We can say “Yes”, but only if we have a minimal prerequisite case, which we have a good polymer, real “real time” analyzer, biocompatible and biodegradable coatings etc. In other cases the general problem of soil chip design is not a problem of engineering, but it is a problem of soil-chip interface chemical physics and physical chemistry. Such problem may be interpreted only as a principal physical, but not as a technical problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Sana Tfaili ◽  
Cyril Gobinet ◽  
Jean-François Angiboust ◽  
Michel Manfait ◽  
Olivier Piot

Raman microimaging is a potential analytical technique in health field and presents many possible pharmaceutical applications. In this study, we tested a micrometer spatial resolution probe coupled to a portable Raman imager via an indexed multifiber bundle. At the level of the probe, the fibers were arranged in a circular geometry in order to fit to the pupil of an objective. The imaging potential of this Raman system was assessed on pharmaceutical-like pellets. We showed that this setup permits to record, nearly in real time, Raman images with a micrometer resolution. The collected images revealed a marked heterogeneity in chemicals distribution. Further investigations will be led on cells and biological tissues to evaluate the potential of this Raman imaging device for biomedical applications.


2005 ◽  
Vol 85 (3) ◽  
pp. 533-541 ◽  
Author(s):  
Peiqiang Yu ◽  
Colleen R Christensen ◽  
David A Christensen ◽  
John J McKinnon

Synchrotron-based FTIR micro spectroscopy, developed recently as a novel, rapid and non-destructive analytical technique, could reveal chemical information of the intrinsic microstructures of biological tissues at ultra-spatial resolution. The objective of this study was to use synchrotron reflection FTIR microspectroscopy to explore chemical makeup (functional group and bonding characteristics) of ultrastructural tissues within cellular dimensions (10 µm × 10 µm) of yellow-seeded (Brassica rapa ‘Klondike’) and brown-seeded (Brassica napus ‘Bounty’) canola. The results showed that the ratios of total CH2:CH3, CH3-asymmetric:CH3-symmetric, CH2-asymmetric:CH2-symmetric and total CH-asymmetric:CH-symmetric were 1.06 and 1.13, 1.28 and 1.26, 2.90 and 3.08, 1.82 and 1.78, for the yellow-seeded and brown-seeded canola, respectively. There were no differences between the two canola types in the content and ratios of CH groups (CH2 and CH3) of the scanned areas, indicating that lipid chain length and branching are similar between the two seed types. There were significant differences in amide I and total CHO, indicating different microstructural protein (peptide C=O bonding) and carbohydrate makeup between the two canola types. The results also show differences in the ratios of total NH and OH:CHO (2.85 vs. 3.84, P < 0.01), total CH:total CHO (0.23 vs. 0.32, P < 0.01), amide I:NH and OH (0.48 vs. 0.37, P = 0.07), amide I:hemiceullulose (P = 0.09), hemicellulose:total CHO (0.039 vs. 0.059, P < 0.001), CHO:amide I (1.11 vs. 0.84, P = 0.051) between the yellow-seeded and brown-seeded canola, and indicate that the chemical makeup of the microstructure differs between the yellow-seeded (Brassica rapa) and brown-seeded (Brassica napus) canola type. In conclusion, this study indicates that synchrotron-based reflection FTIR microspectroscopy can be used to identify microstructural-chemical features of canola tissue. More detailed study is required to define the extent of differences that exist between the yellow-seeded (Brassica rapa) vs. dark-brownseeded (Brassica napus) canola. Such information on the microstructural-chemical features can be used by canola breeding programs to select superior varieties of canola for special purposes, and for predicting canola quality and nutritive value for humans and animals. Key words: Synchrotron, reflection infrared microspectroscopy, functional groups, chemical makeup, ultrastructure, canola, feed structure and chemistry


2009 ◽  
Vol 2 (4) ◽  
pp. 1771-1782
Author(s):  
R. Schnitzhofer ◽  
A. Wisthaler ◽  
A. Hansel

Abstract. A method for real time profiling of volatile organic compounds (VOCs) was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS) as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Potential positive and negative VOC artifacts of the inlet line were characterized in the laboratory and in the field and were found to be insignificant for most compounds. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal pattern of air pollutants under winter inversion conditions.


2009 ◽  
Vol 2 (2) ◽  
pp. 773-777 ◽  
Author(s):  
R. Schnitzhofer ◽  
A. Wisthaler ◽  
A. Hansel

Abstract. A method for real-time profiling of volatile organic compounds (VOCs) was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS) as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube) were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7%) and xylene (-6%). The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions.


Sign in / Sign up

Export Citation Format

Share Document