Thermodynamic relationship between flupirtine maleate polymorphs

2018 ◽  
Vol 134 (3) ◽  
pp. 2057-2063 ◽  
Author(s):  
Yumei Zhao ◽  
Zhi-bing Zheng ◽  
Song Li
Respuestas ◽  
2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Juan Guillermo Popayán-Hernández ◽  
Orlando Zúñiga-Escobar

This document estimated the behavior of the CO2 flux in the San Andrés Islas maritime for the first half of 2019. This behavior was established based on the thermodynamic relationship between the sea surface temperature, the partial pressures of CO2 in the atmosphere and the water column, this from data derived from remote sensors. The satellite data were derived from the MODIS aqua sensors and the MERRA model for sea surface temperature and wind speed respectively. Satellite images were obtained from NASA databases, subsequently processed and specialized in ArcGis 10.1. Finally, the behavior of the CO2 flux is shown for the San Andrés Islas maritime, finding that it does not have a tendency to capture CO2, so acidification processes are discarded for the selected study period.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


1995 ◽  
Vol 205 (4) ◽  
pp. 274-280 ◽  
Author(s):  
D. Wolf ◽  
J. Wang ◽  
S.R. Phillpot ◽  
H. Gleiter

Isotherms of Kr and Xe in chabazite have been obtained for absolute sorption and for Gibbs excess sorption, in the temperature range 150 to 450 °C and at pressures up to 100 atm. Thermodynamic equilibrium constants for distribution of gas between the crystals and the gas phase, standard state concentrations and heats of sorption have been determined. At the highest pressures differences between absolute sorption and Gibbs excess sorption were large. The change of equilibrium fugacity with temperature for given absolute and Gibbs excess sorptions yielded two differential heats of sorption and two differential entropies of the sorbate. These heats, and the corresponding entropies, differed numerically and in their dependence upon amount sorbed. The thermodynamic relationship between the two heats has been derived and discussed.


IUBMB Life ◽  
2004 ◽  
Vol 56 (7) ◽  
pp. 403-407 ◽  
Author(s):  
Khawar Sohail Siddiqui ◽  
Saleem Ahmed Bokhari ◽  
Ahmed Jawaad Afzal ◽  
Surjit Singh

2008 ◽  
Vol 112 (35) ◽  
pp. 11039-11048 ◽  
Author(s):  
Qi Wang ◽  
Akira Takeuchi ◽  
Yasuhisa Yamamura ◽  
Kazuya Saito ◽  
Wasuke Mori ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xin Zhang ◽  
Jianhong Bian ◽  
Wenjie Zhai ◽  
Jing Dong ◽  
Huihui Liang ◽  
...  

The interactions between bovine serum albumin (BSA) and two cleavable anionic surfactants, sodium 3-[(2-nonyl-1,3-dioxolan-4-yl)methoxy]propane-1-sulfonate (SNPS) and sodium 3,3′-(2-nonyl-1,3-dioxane-5,5-diyl)bis(methylene)bis(oxy)dipropane-1-sulfonate (SNDPS), have been studied by means of fluorescence spectroscopy and thermodynamic analysis. The fluorescence of BSA is quenched via a static quenching mechanism with the addition of the surfactants. The binding constants of the surfactants and proteins have been measured, with KA(SNPS) = 8.71×104 M−1 and KA(SNDPS) = 7.08 × 104 M−1, respectively. The interaction between surfactants and BSA is mainly of hydrophobic nature, based on the number of binding sites, n[n(SNPS) = 1.57, n(SNDPS) = 1.47], and the thermodynamic relationship. These results suggest that SNPS and SNDPS could be effective protein denaturants for protein separation and analysis.


Sign in / Sign up

Export Citation Format

Share Document