Effect of Intracerebroventricular Administration of Apelin-13 on the Hypothalamus–Pituitary–Thyroid Axis and Peripheral Uncoupling Proteins

2017 ◽  
Vol 24 (4) ◽  
pp. 511-517
Author(s):  
Yavuz Erden ◽  
Suat Tekin ◽  
Cigdem Tekin ◽  
Fatma Ozyalin ◽  
Umit Yilmaz ◽  
...  
2003 ◽  
Vol 149 (4) ◽  
pp. 257-271 ◽  
Author(s):  
T Zimmermann-Belsing ◽  
G Brabant ◽  
JJ Holst ◽  
U Feldt-Rasmussen

The identification and sequencing of the ob gene and its product, leptin, in 1994 opened new insights in the study of the mechanisms controlling body weight and led to a surge of research activity. Since its discovery, leptin has been the subject of an enormous amount of work especially within the fields of nutrition, metabolism and endocrinology. Leptin is accepted as an adipose signal, and even though the underlying mechanisms are not fully clarified, leptin, in addition to the thyroid hormones, is believed to be involved in regulation during the switch from the fed to the starved state. It is not clear whether leptin and the melanocortin pathways interact with the thyroid axis under physiological conditions other than during starvation or in response to severe illness, both states in which the hypothalamo-pituitary-thyroid axis may be severely suppressed. In addition to the suggested central relationship between leptin and thyroid hormones, there might also be a peripheral relationship although this effect is not clear. Both thyroid hormones and leptin might be involved in the adaptive thermogenesis through mitochondrial uncoupling proteins and heat production because both thyroxine and triiodothyronine are involved in the starvation-induced decrease in thermogenesis. Both rodent and human studies of leptin have failed to show any consistent relationship between thyroid function and serum leptin concentrations. However, leptin might have an important role in thyroid pathophysiology due to thyroid hormone involvement in thermogenesis and regulation of uncoupling proteins. In this review, we have focused on leptin in relation to thyroid pathophysiology.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 426
Author(s):  
Giuseppe Bellastella ◽  
Maria Ida Maiorino ◽  
Lorenzo Scappaticcio ◽  
Annamaria De Bellis ◽  
Silvia Mercadante ◽  
...  

Chronobiology is the scientific discipline which considers biological phenomena in relation to time, which assumes itself biological identity. Many physiological processes are cyclically regulated by intrinsic clocks and many pathological events show a circadian time-related occurrence. Even the pituitary–thyroid axis is under the control of a central clock, and the hormones of the pituitary–thyroid axis exhibit circadian, ultradian and circannual rhythmicity. This review, after describing briefly the essential principles of chronobiology, will be focused on the results of personal experiences and of other studies on this issue, paying particular attention to those regarding the thyroid implications, appearing in the literature as reviews, metanalyses, original and observational studies until 28 February 2021 and acquired from two databases (Scopus and PubMed). The first input to biological rhythms is given by a central clock located in the suprachiasmatic nucleus (SCN), which dictates the timing from its hypothalamic site to satellite clocks that contribute in a hierarchical way to regulate the physiological rhythmicity. Disruption of the rhythmic organization can favor the onset of important disorders, including thyroid diseases. Several studies on the interrelationship between thyroid function and circadian rhythmicity demonstrated that thyroid dysfunctions may affect negatively circadian organization, disrupting TSH rhythm. Conversely, alterations of clock machinery may cause important perturbations at the cellular level, which may favor thyroid dysfunctions and also cancer.


2021 ◽  
Vol 80 (3) ◽  
pp. 567-578 ◽  
Author(s):  
Rosaria Sciarrillo ◽  
Mariana Di Lorenzo ◽  
Salvatore Valiante ◽  
Luigi Rosati ◽  
Maria De Falco

Abstract Different environmental contaminants disturb the thyroid system at many levels. AlkylPhenols (APs), by-products of microbial degradation of AlkylPhenol Polyethoxylates (APEOs), constitute an important class of Endocrine Disrupting Chemicals (EDCs), the two most often used environmental APs being 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP). The purpose of the present study was to investigate the effects on the thyroid gland of the bioindicator Podarcis siculus of OP alone and in combination with NP. We used radioimmunoassay to determine their effects on plasma 3,3′,5-triiodo-L-thyronine (T3), 3,3′,5,5′-L-thyroxine (T4), thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH) levels in adult male lizards. We also investigated the impacts of AP treatments on hepatic 5′ORD (type II) deiodinase and hepatic content of T3 and T4. After OP and OP + NP administration, TRH levels increased, whereas TSH, T3, and T4 levels decreased. Lizards treated with OP and OP + NP had a higher concentration of T3 in the liver and 5′ORD (type II) activity, whereas T4 concentrations were lower than that observed in the control group. Moreover, histological examination showed that the volume of the thyroid follicles became smaller in treated lizards suggesting that that thyroid follicular epithelial cells were not functionally active following treatment. This data collectively suggest a severe interference with hypothalamus–pituitary–thyroid axis and a systemic imbalance of thyroid hormones. Graphic Abstract


1976 ◽  
Vol 42 (6) ◽  
pp. 1179-1181 ◽  
Author(s):  
R. M. STEWART ◽  
S. HEMLI ◽  
G. H. DANIELS ◽  
E. H. KOLODNY ◽  
F. MALOOF

2019 ◽  
Vol 128 (06/07) ◽  
pp. 388-394
Author(s):  
Helge Müller-Fielitz ◽  
Markus Schwaninger

AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis, heart function, and bone formation. To control the effects of TH in target organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific availability of TH are highly regulated by negative feedback. To exert a central feedback, TH must enter the brain via specific transport mechanisms and cross the blood-brain barrier. Here, tanycytes, which are located in the ventral walls of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as gatekeepers. Tanycytes are able to transport, sense, and modify the release of hormones of the HPT axis and are involved in feedback regulation. In this review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone (TRH) release and review available genetic tools to investigate the physiological functions of these cells.


Sign in / Sign up

Export Citation Format

Share Document