Investigation into the Anticancer Activity and Apoptosis Induction of Brevinin-2R and Brevinin-2R-Conjugated PLA–PEG–PLA Nanoparticles and Strong Cell Cycle Arrest in AGS, HepG2 and KYSE-30 Cell Lines

2018 ◽  
Vol 25 (3) ◽  
pp. 1225-1239
Author(s):  
Robab Hassanvand Jamadi ◽  
Asadollah Asadi ◽  
Hashem Yaghoubi ◽  
Fariba Goudarzi
2012 ◽  
Vol 13 (10) ◽  
pp. 5131-5136 ◽  
Author(s):  
Aied M. Alabsi ◽  
Rola Ali ◽  
Abdul Manaf Ali ◽  
Sami Abdo Radman Al-Dubai ◽  
Hazlan Harun ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
J. A. Badmus ◽  
O. E. Ekpo ◽  
A. A. Hussein ◽  
M. Meyer ◽  
D. C. Hiss

Natural plant products with potent growth inhibition and apoptosis induction properties are extensively being investigated for their cancer chemopreventive potential.Holarrhena floribunda(HF) is used in a wide range of traditional medicine practices. The present study investigated the antiproliferative and apoptosis induction potential of methanolic leaf extracts of HF against breast (MCF-7), colorectal (HT-29), and cervical (HeLa) cancer cells relative to normal KMST-6 fibroblasts. The MTT assay in conjunction with the trypan blue dye exclusion and clonogenic assays were used to determine the effects of the extracts on the cells. Caspase activities were assayed with Caspase-Glo 3/7 and Caspase-9 kits. Apoptosis induction was monitored by flow cytometry using the APOPercentage and Annexin V-FITC kits. Reactive oxygen species (ROS) was measured using the fluorogenic molecular probe 5-(and-6)-chloromethyl-2′,7′-dichlorofluorescein diacetate acetyl ester and cell cycle arrest was detected with propidium iodide. Dose-response analyses of the extract showed greater sensitivity in cancer cell lines than in fibroblast controls. Induction of apoptosis, ROS, and cell cycle arrest were time- and dose-dependent for the cancer cell lines studied. These findings provide a basis for further studies on the isolation, characterization, and mechanistic evaluation of the bioactive compounds responsible for the antiproliferative activity of the plant extract.


2018 ◽  
Vol 18 (4) ◽  
pp. 372-381 ◽  
Author(s):  
Magda F. Mohamed ◽  
Amr Mohamed Abdelmoniem ◽  
Ahmed H.M. Elwahy ◽  
Ismail A. Abdelhamid

Background: Recently, it is reported that heterocycles containing pyrimidoquinoline moiety show a broad spectrum of medicinal and pharmacological properties including anticancer, anti-microbial, anti-inflammatory activities, analgesic and antiviral. In additions, spirocyclicoxindole containing compounds represent an important class of compounds that exhibit wide range of biological properties. The asymmetric chiral spiro carbon is considered to be the main criteria of the bioactivities. Spirooxindole structures represent the main skeleton for various alkaloids and pharmaceutically important compounds. Among them, the naturally occurring pyrrolidinylespirooxindole alkaloid, horsifiline that exhibits anticancer activity against human brain cancer cell lines. Objective: The objective of this study is the synthesis of novel bis spiro-cyclic 2-oxindole of pyrimido[4,5-b]quinoline derivatives and evaluate the anticancer activity of new compounds for synergistic purpose. Different genetic tools were used in an attempt to know the mechanism of action of this compound against breast cancer. Method: An efficient one pot synthesis of bis spiro-cyclic 2-oxindole derivatives of pyrimido[4,5- b]quinoline-4,6-dione using 6-aminouracil, bis-isatin and dimedone has been developed. The cytotoxic effect against different human cell lines MCF7, HCT116 and A549 cell lines was evaluated. The derivative 6a, was found the most encouraging compound in this series and it was selected for molecular studies against MCF7. Results: Our data indicated that compound 6a is an attractive target for breast cancer, as it inhibits proliferation, cell cycle progression and induces apoptosis of tumor cells. This inhibition is mediated by fragmentation of genomic DNA, up-regulation of [caspase-3, tumor suppressor gene p53, and pro-apoptotic gene BAX], and down-regulation of anti-apoptotic BCL2 gene. In additions it caused cell cycle arrest in S phase. This work provides an evidence of the potent effect of the new compound 6a and assists in the progress of new healing agents for cancer. Conclusion: We have developed an efficient method for the synthesis of novel bioactive bis spirocyclic 2-oxindole derivatives incorporating pyrimido[4,5-b]quinoline derivatives. Most of our new derivatives give potent cytotoxic effect more than the standard drug Fluorouracil (5-FU) especially, compound 6a which was the most active and promising one in this series against MCF7, HCT116, and A549 cell lines.


2019 ◽  
Vol 38 (2) ◽  
pp. 369-377 ◽  
Author(s):  
Joana Jorge ◽  
Sara Petronilho ◽  
Raquel Alves ◽  
Margarida Coucelo ◽  
Ana Cristina Gonçalves ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (64) ◽  
pp. 107730-107743 ◽  
Author(s):  
Liping Han ◽  
Yongfei Zhang ◽  
Shuai Liu ◽  
Qingwei Zhao ◽  
Xianhong Liang ◽  
...  

2020 ◽  
Vol 29 (4) ◽  
pp. 617-629
Author(s):  
Ahmed M. El-Agrody ◽  
Ahmed M. Fouda ◽  
Mohammed A. Assiri ◽  
Ahmed Mora ◽  
Tarik E. Ali ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2088-2088
Author(s):  
Elena Elstner ◽  
Hongyu Liu ◽  
Chuanbing Zang ◽  
Dachuan Liu ◽  
Shunnan Xu ◽  
...  

Abstract Peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear hormone receptors which play key roles in the differentiation and lipid metabolism of adipocytes. Recent data frequently indicated that PPAR ligands are also implicated in the growth inhibition, differentiation and apoptosis induction of several human cancers with diverse tissues. We previously showed that Pioglitazone (PGZ), a specific PPARgamma ligand and a member of the approved thiazolidinedione (TZD) class of anti-diabetic drugs, inhibited growth and induced apoptosis of human ALL cell lines including Ph-positive ALL cells (Zang et. al., Leukemia Research, 28:387, 2004). In this study, effects of a novel dual ligand specific for PPARalpha/gamma, TZD18 (MERCK, NJ, USA), on Ph-positive ALL cell lines, BV173, SD1 and Sup-B15 were examined. We noted that treatment of these cells with TZD18 resulted in growth inhibition in a dose-dependent manner which was associated with a G1 to S cell cycle arrest. This growth inhibition was much stronger than that of PGZ. However, this effect seemed not to be meditated through activation of PPARalpha or PPARgamma, since antagonists of PPARalpha or gamma could not reverse it. By studying the key regulators of cell cycle progression, we found that the expression of the cyclin dependent kinase inhibitor (CDKI) p27kip1, but not that of p21cip1, was enhanced whereas the expression of c-myc, cyclin D2, and cyclin dependent kinase 2 and 4 (CDK2 and CDK4) was decreased when these cells were treated with TZD18. Therefore, upregulation of p27kip1 and downregulation of cyclin Ds and CDKs may account for the G1 cell cycle arrest. Furthermore, a remarkable apoptosis induction was found in Ph-positive ALL cells treated with this dual ligand as measured by cell-death ELISA. No obvious alteration of bcl-2 levels but an upregulation of bax were observed in apoptotic cells. An activation of caspase-8 and caspase-9 by this ligand was also noticed. Of clinical importance, TZD18 enhanced the cytotoxic effect of Imatinib, a specific therapeutic agent for Ph-positive ALL. Overall, our findings strongly suggest that TZD18 may offer a new therapeutic agent for treatment of Ph-positive ALL in an adjuvant setting. (This study was supported by grants from Deutsche Jose Carreras Leukaemie-Stiftung and Deutsche Forschungsgemeinschaft to EE)


Sign in / Sign up

Export Citation Format

Share Document