scholarly journals Symmetric Shannon capacity is the independence number minus 1

Author(s):  
Tamás Terpai

AbstractA symmetric variant of the Shannon capacity of graphs is defined and computed.

10.37236/3214 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Ashik Mathew Kizhakkepallathu ◽  
Patric RJ Östergård ◽  
Alexandru Popa

The Shannon capacity of a graph $G$ is $c(G)=\sup_{d\geq 1}(\alpha(G^d))^{\frac{1}{d}},$ where $\alpha(G)$ is the independence number of $G$. The Shannon capacity of the Kneser graph $\mathrm{KG}_{n,r}$ was determined by Lovász in 1979, but little is known about the Shannon capacity of the complement of that graph when $r$ does not divide $n$. The complement of the Kneser graph, $\overline{\mathrm{KG}}_{n,2}$, is also called the triangular graph $T_n$. The graph $T_n$ has the $n$-cycle $C_n$ as an induced subgraph, whereby $c(T_n) \geq c(C_n)$, and these two families of graphs are closely related in the current context as both can be considered via geometric packings of the discrete $d$-dimensional torus of width $n$ using two types of $d$-dimensional cubes of width $2$. Bounds on $c(T_n)$ obtained in this work include $c(T_7) \geq \sqrt[3]{35} \approx 3.271$, $c(T_{13}) \geq \sqrt[3]{248} \approx 6.283$, $c(T_{15}) \geq \sqrt[4]{2802} \approx 7.276$, and $c(T_{21}) \geq \sqrt[4]{11441} \approx 10.342$.


2016 ◽  
Vol 25 (5) ◽  
pp. 766-767 ◽  
Author(s):  
PETER KEEVASH ◽  
EOIN LONG

Let G1 × G2 denote the strong product of graphs G1 and G2, that is, the graph on V(G1) × V(G2) in which (u1, u2) and (v1, v2) are adjacent if for each i = 1, 2 we have ui = vi or uivi ∈ E(Gi). The Shannon capacity of G is c(G) = limn → ∞ α(Gn)1/n, where Gn denotes the n-fold strong power of G, and α(H) denotes the independence number of a graph H. The normalized Shannon capacity of G is $$C(G) = \ffrac {\log c(G)}{\log |V(G)|}.$$ Alon [1] asked whether for every ε < 0 there are graphs G and G′ satisfying C(G), C(G′) < ε but with C(G + G′) > 1 − ε. We show that the answer is no.


2015 ◽  
Vol 40 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Marcin Jurkiewicz ◽  
Marek Kubale ◽  
Krzysztof Ocetkiewicz

Abstract In the paper we give some theoretical and computational results on the third strong power of cycle-powers, for example, we have found the independence numbers α((C102)√3) = 30 and α((C144)√3) = 14. A number of optimizations have been introduced to improve the running time of our exhaustive algorithm used to establish the independence number of the third strong power of cycle-powers. Moreover, our results establish new exact values and/or lower bounds on the Shannon capacity of noisy channels.


Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 17
Author(s):  
Assaf Ben-Yishai ◽  
Young-Han Kim ◽  
Rotem Oshman ◽  
Ofer Shayevitz

The interactive capacity of a noisy channel is the highest possible rate at which arbitrary interactive protocols can be simulated reliably over the channel. Determining the interactive capacity is notoriously difficult, and the best known lower bounds are far below the associated Shannon capacity, which serves as a trivial (and also generally the best known) upper bound. This paper considers the more restricted setup of simulating finite-state protocols. It is shown that all two-state protocols, as well as rich families of arbitrary finite-state protocols, can be simulated at the Shannon capacity, establishing the interactive capacity for those families of protocols.


2017 ◽  
Vol 4 (8) ◽  
pp. 25-37 ◽  
Author(s):  
Doug Chatham

Abstract Given a (symmetrically-moving) piece from a chesslike game, such as shogi, and an n×n board, we can form a graph with a vertex for each square and an edge between two vertices if the piece can move from one vertex to the other. We consider two pieces from shogi: the dragon king, which moves like a rook and king from chess, and the dragon horse, which moves like a bishop and rook from chess. We show that the independence number for the dragon kings graph equals the independence number for the queens graph. We show that the (independent) domination number of the dragon kings graph is n − 2 for 4 ≤ n ≤ 6 and n − 3 for n ≥ 7. For the dragon horses graph, we show that the independence number is 2n − 3 for n ≥ 5, the domination number is at most n−1 for n ≥ 4, and the independent domination number is at most n for n ≥ 5.


Sign in / Sign up

Export Citation Format

Share Document