Stability Analysis and Numerical Simulation of Differential Frost Heave

2008 ◽  
Vol 40 (3) ◽  
pp. 277-298 ◽  
Author(s):  
Rorik A. Peterson
Author(s):  
Yan Di ◽  
Jian Shuai ◽  
Lingzhen Kong ◽  
Xiayi Zhou

Frost heave must be considered in cases where pipelines are laid in permafrost in order to protect the pipelines from overstress and to maintain the safe operation. In this paper, a finite element model for stress/strain analysis in a pipeline subjected to differential frost heave was presented, in which the amount of frost heave is calculated using a segregation potential model and considering creep effects of the frozen soil. In addition, a computational method for the temperature field around a pipeline was proposed so that the frozen depth and temperature variation gradient could be obtained. Using the procedure proposed in this paper, stress/strain can be calculated according to the temperature on the surface of soil and in a pipeline. The result shows the characteristics of deformation and loading of a pipeline subjected to differential frost heave. In general, the methods and results in this paper can provide a reference for the design, construction and operation of pipelines in permafrost areas.


2022 ◽  
Vol 9 ◽  
Author(s):  
Chunyan Bao ◽  
Lingtao Zhan ◽  
Yingjie Xia ◽  
Yongliang Huang ◽  
Zhenxing Zhao

The creep slope is a dynamic development process, from stable deformation to instability failure. For the slope with sliding zone, it generally creeps along the sliding zone. If the sliding zone controlling the slope sliding does not have obvious displacement, and the slope has unexpected instability without warning, the harm and potential safety hazard are often much greater than the visible creep. Studying the development trend of this kind of landslide is of great significance to slope treatment and landslide early warning. Taking Xiashan village landslide in Huishan Town, Xinchang County, Zhejiang Province as an example, the landslide point was determined by numerical simulation in 2006. Generally, the landslide is a typical long-term slow deformation towards the free direction. Based on a new round of investigation and monitoring, this paper shows that there are signs of creeping on the surface of the landslide since 2003, and there is no creep on the deep sliding surface. The joint fissures in the landslide area are relatively developed, and rainfall infiltration will soften the soft rock and soil layer and greatly reduce its stability. This paper collects and arranges the rainfall data of the landslide area in recent 30 years, constructs the slope finite element model considering rainfall conditions through ANSYS finite element software, and carries out numerical simulation stability analysis. The results show that if cracks appear below or above the slope’s sliding surface, or are artificially damaged, the sliding surface may develop into weak cracks. Then, the plastic zone of penetration is offset; In the case of heavy rain, the slope can unload itself under the action of rainfall. At this time, the slope was unstable and the landslide happened suddenly.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3664-3670

The present model is devoted to an analytical study of a three species syn-ecological model which the 1 st species ( ) N1 ammensal on the 2 nd species ( ) N2 and 2 nd species ( ) N2 ammensal on the 3 rd species ( ) N3 . Here 1 st species and 2 nd species are neutral to each other. A time delay is established between 1 st species and 2 nd species and 2 nd species and 3rd species. All attainable equilibrium points of the model are known and native stability for each case is mentioned and also the global stability of co-existing state is discussed by constructing appropriate Lyapunov operate. Further, precise solutions of perturbed equations are derived. The steadiness analysis is supported by numerical simulation victimization MatLab.


2012 ◽  
Vol 151 ◽  
pp. 291-294
Author(s):  
Jian Hua Cui ◽  
Ping Liu

Based on the construction of the transfer floor of Yunding project in Chengdu, to solve the issues from the integral stability and safety of the transfer beam high-formwork supporting system, the method of the theoretical calculation, the method of the numerical simulation and real-time monitoring were applied in order to make some conclusions. The conclusions will be significance to apply in the future similar projects for reference and guidance.


Sign in / Sign up

Export Citation Format

Share Document