scholarly journals On the Zakharov–Mikhailov action: $$4\hbox {d}$$ Chern–Simons origin and covariant Poisson algebra of the Lax connection

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Vincent Caudrelier ◽  
Matteo Stoppato ◽  
Benoît Vicedo

AbstractWe derive the $$2\hbox {d}$$ 2 d Zakharov–Mikhailov action from $$4\hbox {d}$$ 4 d Chern–Simons theory. This $$2\hbox {d}$$ 2 d action is known to produce as equations of motion the flatness condition of a large class of Lax connections of Zakharov–Shabat type, which includes an ultralocal variant of the principal chiral model as a special case. At the $$2\hbox {d}$$ 2 d level, we determine for the first time the covariant Poisson bracket r-matrix structure of the Zakharov–Shabat Lax connection, which is of rational type. The flatness condition is then derived as a covariant Hamilton equation. We obtain a remarkable formula for the covariant Hamiltonian in terms of the Lax connection which is the covariant analogue of the well-known formula “$$H={{\,\mathrm{Tr}\,}}L^2$$ H = Tr L 2 ”.

2011 ◽  
Vol 26 (26) ◽  
pp. 4647-4660
Author(s):  
GOR SARKISSIAN

In this paper we perform canonical quantization of the product of the gauged WZW models on a strip with boundary conditions specified by permutation branes. We show that the phase space of the N-fold product of the gauged WZW model G/H on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of the double Chern–Simons theory on a sphere with N holes times the time-line with G and H gauge fields both coupled to two Wilson lines. For the special case of the topological coset G/G we arrive at the conclusion that the phase space of the N-fold product of the topological coset G/G on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of Chern–Simons theory on a Riemann surface of the genus N-1 times the time-line with four Wilson lines.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

Abstract We present homogeneous Yang-Baxter deformations of the AdS5×S5 supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al. [5] so as to reproduce the 2D symmetric coset sigma model, and specify boundary conditions governing homogeneous Yang-Baxter deformations. Then the conditions are applicable for the AdS5×S5 supercoset sigma model case as well. In addition, homogeneous bi-Yang-Baxter deformation is also discussed.


2004 ◽  
Vol 18 (09) ◽  
pp. 1261-1275 ◽  
Author(s):  
PAUL BRACKEN

The Chern–Simons functional is introduced in terms of chiral fields and then studied here. The current can be regarded as a non-Abelian pure gauge potential so that the zero-curvature equations are of Lagrangian form for pure non-Abelian Chern–Simons theory. The equations of motion are developed and a formalism which connects the zero curvature equations with a related moving trihedral is introduced. The moving frame equations are written down for the system and a correspondence between these equations and several related elementary integrable systems is described in the same formalism as well.


2020 ◽  
Vol 957 ◽  
pp. 115080 ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Robert F. Penna

Abstract Many integrable systems can be reformulated as holomorphic vector bundles on twistor space. This is a powerful organizing principle in the theory of integrable systems. One shortcoming is that it is formulated at the level of the equations of motion. From this perspective, it is mysterious that integrable systems have Lagrangians. In this paper, we study a Chern-Simons action on twistor space and use it to derive the Lagrangians of some integrable sigma models. Our focus is on examples that come from dimensionally reduced gravity and supergravity. The dimensional reduction of general relativity to two spacetime dimensions is an integrable coset sigma model coupled to a dilaton and 2d gravity. The dimensional reduction of supergravity to two spacetime dimensions is an integrable coset sigma model coupled to matter fermions, a dilaton, and 2d supergravity. We derive Lax operators and Lagrangians for these 2d integrable systems using the Chern-Simons theory on twistor space. In the supergravity example, we use an extended setup in which twistor Chern-Simons theory is coupled to a pair of matter fermions.


Author(s):  
Sylvain Lacroix

Abstract These lecture notes concern the semi-holomorphic 4d Chern-Simons theory and its applications to classical integrable field theories in 2d and in particular integrable sigma-models. After introducing the main properties of the Chern-Simons theory in 3d, we will define its 4d analogue and explain how it is naturally related to the Lax formalism of integrable 2d theories. Moreover, we will explain how varying the boundary conditions imposed on this 4d theory allows to recover various occurences of integrable sigma-models through this construction, in particular illustrating this on two simple examples: the Principal Chiral Model and its Yang-Baxter deformation. These notes were written for the lectures delivered at the school “Integrability, Dualities and Deformations”, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


1995 ◽  
Vol 73 (5-6) ◽  
pp. 344-348 ◽  
Author(s):  
Yeong-Chuan Kao ◽  
Hsiang-Nan Li

We show that the two-loop contribution to the coefficient of the Chern–Simons term in the effective action of the Yang–Mills–Chern–Simons theory is infrared finite in the background field Landau gauge. We also discuss the difficulties in verifying the conjecture, due to topological considerations, that there are no more quantum corrections to the Chern–Simons term other than the well-known one-loop shift of the coefficient.


Sign in / Sign up

Export Citation Format

Share Document