A fluidic-muscle driven force-controlled parallel platform for physical simulation of virtual spatial force-displacement laws

Meccanica ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 171-182 ◽  
Author(s):  
Mahendra Dhanu Singh ◽  
Kusnadi Liem ◽  
Vladimirs Leontjievs ◽  
Andrés Kecskeméthy
PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 4130041-4130042
Author(s):  
Mahendra Dhanu Singh ◽  
Kusnadi Liem ◽  
Rüdiger Neumann ◽  
Andrés Kecskeméthy

1968 ◽  
Vol 11 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Lois Joan Sanders

A tongue pressure unit for measurement of lingual strength and patterns of tongue pressure is described. It consists of a force displacement transducer, a single channel, direct writing recording system, and a specially designed tongue pressure disk, head stabilizer, and pressure unit holder. Calibration with known weights indicated an essentially linear and consistent response. An evaluation of subject reliability in which 17 young adults were tested on two occasions revealed no significant difference in maximum pressure exerted during the two test trials. Suggestions for clinical and research use of the instrumentation are noted.


1997 ◽  
Vol 26 (3) ◽  
pp. 129-137
Author(s):  
S. R. Bandyopadhyay ◽  
Biswanath Ray
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 402
Author(s):  
Ning Liu ◽  
Tianqi Tian ◽  
Zhong Su ◽  
Wenhao Qi

This paper studies the measurement of motion parameters of a parachute scanning platform. The movement of a parachute scanning platform has fast rotational velocity and a complex attitude. Therefore, traditional measurement methods cannot measure the motion parameters accurately, and thus fail to satisfy the requirements for the measurement of parachute scanning platform motion parameters. In order to solve these problems, a method for measuring the motion parameters of a parachute scanning platform based on a combination of magnetic and inertial sensors is proposed in this paper. First, scanning motion characteristics of a parachute-terminal-sensitive projectile are analyzed. Next, a high-precision parachute scanning platform attitude measurement device is designed to obtain the data of magnetic and inertial sensors. Then the extended Kalman filter is used to filter and observe errors. The scanning angle, the scanning angle velocity, the falling velocity, and the 2D scanning attitude are obtained. Finally, the accuracy and feasibility of the algorithm are analyzed and validated by MATLAB simulation, semi-physical simulation, and airdrop experiments. The presented research results can provide helpful references for the design and analysis of parachute scanning platforms, which can reduce development time and cost.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


Sign in / Sign up

Export Citation Format

Share Document