Postbuckling behavior of functionally graded nanobeams subjected to thermal loading based on the surface elasticity theory

Meccanica ◽  
2016 ◽  
Vol 52 (1-2) ◽  
pp. 283-297 ◽  
Author(s):  
R. Ansari ◽  
T. Pourashraf ◽  
R. Gholami ◽  
S. Sahmani
Author(s):  
S. Sahmani ◽  
M. M. Aghdam

A size-dependent shell model which accounts for geometrical imperfection sensitivity of the axial postbuckling characteristics of a cylindrical nanoshell made of functionally graded material (FGM) is proposed within the framework of the surface elasticity theory. In accordance with a power law, the material properties of the FGM nanoshell are supposed to vary through the shell thickness. In order to eliminate the stretching-bending coupling terms, the change in the position of physical neutral plane corresponding to different volume fractions is taken into account. Based upon the virtual work’s principle, the non-classical governing differential equations are derived and then deduced to boundary layer-type ones. After that, a perturbation-based solution methodology is employed to predict the size dependency in the nonlinear instability of perfect and imperfect axially loaded FGM nanoshells with various values of shell thickness, material property gradient index and different uniform temperature changes. It was seen that for thicker FGM nanoshells in which the surface free energy effects diminish, the influence of the initial geometric imperfection on the critical buckling load is higher than its influence on the minimum load of the postbuckling domain. It is also found that through reduction of the surface free energy effects, the influence of material property gradient index on the critical end-shortening of FGM nanoshell decreases.


Author(s):  
Y. Ait Ferhat ◽  
A. Boulenouar ◽  
N. Benamara ◽  
L. Benabou

The main objective of this work is to present a numerical modeling of mixed-mode fracture in isotropic functionally graded materials (FGMs), under mechanical and thermal loading conditions. In this paper, the displacement-based method, termed the generalized displacement correlation (GDC) method, is investigated for estimating stress intensity factor (SIF). Using the ANSYS Parametric Design Language (APDL), the continuous variations of the material properties are incorporated by specified parameters at the centroid of each element. This paper presents various numerical examples in which the accuracy of the present method is verified. Comparisons have been made between the SIFs predicted by the GDC method and the available reference solutions in the current literature. A good agreement is achieved between the results of the GDC method and the reference solutions.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Bora Yıldırım ◽  
Suphi Yılmaz ◽  
Suat Kadıoğlu

The objective of this study is to investigate a particular type of crack problem in a layered structure consisting of a substrate, a bond coat, and an orthotropic functionally graded material coating. There is an internal crack in the orthotropic coating layer. It is parallel to the coating bond-coat interface and perpendicular to the material gradation of the coating. The position of the crack inside the coating is kept as a variable. Hence, the case of interface crack is also addressed. The top and bottom surfaces of the three layer structure are subjected to different temperatures and a two-dimensional steady-state temperature distribution develops. The case of compressively stressed coating is considered. Under this condition, buckling can occur, the crack can propagate, and the coating is prone to delamination. To predict the onset of delamination, one needs to know the fracture mechanics parameters, namely, Mode I and Mode II stress intensity factors and energy release rates. Hence, temperature distributions and fracture parameters are calculated by using finite element method and displacement correlation technique. Results of this study present the effects of boundary conditions, geometric parameters (crack length and crack position), and the type of gradation on fracture parameters.


Sign in / Sign up

Export Citation Format

Share Document