scholarly journals A type III porous-thermo-elastic problem with quasi-static microvoids

Meccanica ◽  
2021 ◽  
Author(s):  
Noelia Bazarra ◽  
Alberto Castejón ◽  
José R. Fernández ◽  
Ramón Quintanilla

AbstractIn this work we study, from the numerical point of view, a one-dimensional thermoelastic problem where the thermal law is of type III. Quasi-static microvoids are also assumed within the model. The variational formulation leads to a coupled linear system made of variational equations and it is written in terms of the velocity, the volume fraction and the temperature. Fully discrete approximations are introduced by using the finite element method and the backward Euler method. A discrete stability property and a priori error estimates are proved, deriving the linear convergence under adequate additional regularity. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution.

2012 ◽  
Vol 23 (5) ◽  
pp. 635-657 ◽  
Author(s):  
J. R. FERNÁNDEZ ◽  
J. M. GARCÍA-AZNAR ◽  
R. MARTÍNEZ

Although in recent years bone piezoelectricity has been normally neglected, lately a new interest has appeared to show the importance of bone piezoelectricity in wet bone's complex response to loading. Here we numerically study a problem, including a strain-adaptive bone remodelling and the piezoelectricity. Its variational formulation leads to a coupled system composed of two linear variational equations for displacements and electric potential, and a parabolic variational inequality for the apparent density. Fully discrete approximations are now introduced by using the finite element method to approximate spatial variable and the explicit Euler scheme to discretise time derivatives. Some a priori error estimates are proved and the linear convergence of the algorithm is deduced under additional regularity conditions. Finally, some one- and two-dimensional numerical simulations are described to show the accuracy of the proposed algorithm and the behaviour of the solution.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1214 ◽  
Author(s):  
Noelia Bazarra ◽  
José A. López-Campos ◽  
Marcos López ◽  
Abraham Segade ◽  
José R. Fernández

In this work, we numerically study a thermo-mechanical problem arising in poro-viscoelasticity with the type III thermal law. The thermomechanical model leads to a linear system of three coupled hyperbolic partial differential equations, and its weak formulation as three coupled parabolic linear variational equations. Then, using the finite element method and the implicit Euler scheme, for the spatial approximation and the discretization of the time derivatives, respectively, a fully discrete algorithm is introduced. A priori error estimates are proved, and the linear convergence is obtained under some suitable regularity conditions. Finally, some numerical results, involving one- and two-dimensional examples, are described, showing the accuracy of the algorithm and the dependence of the solution with respect to some constitutive parameters.


SPE Journal ◽  
2009 ◽  
Vol 15 (02) ◽  
pp. 526-544 ◽  
Author(s):  
R.M.. M. Younis ◽  
H.A.. A. Tchelepi ◽  
K.. Aziz

Summary Growing interest in understanding, predicting, and controlling advanced oil-recovery methods emphasizes the importance of numerical methods that exploit the nature of the underlying physics. The fully implicit method offers unconditional stability of the discrete approximations. This stability comes at the expense of transferring the inherent physical stiffness onto the coupled nonlinear residual equations that are solved at each timestep. Current reservoir simulators apply safeguarded variants of Newton's method that can neither guarantee convergence nor provide estimates of the relation between convergence rate and timestep size. In practice, timestep chops become necessary and are guided heuristically. With growing complexity, such as in thermally reactive compositional flows, convergence difficulties can lead to substantial losses in computational effort and prohibitively small timesteps. We establish an alternative class of nonlinear iteration that converges and associates a timestep to each iteration. Moreover, the linear solution process within each iteration is performed locally. By casting the nonlinear residual equations for a given timestep as an initial-value problem, we formulate a continuation-based solution process that associates a timestep size with each iteration. Subsequently, no iterations are wasted and a solution is always attainable. Moreover, we show that the rate of progression is as rapid as that for a convergent standard Newton method. Moreover, by exploiting the local nature of nonlinear wave propagation typical to multiphase-flow problems, we establish a linear solution process that performs computation only where necessary. That is, given a linear convergence tolerance, we identify a minimal subset of solution components that will change by more than the specified tolerance. Using this a priori criterion, each linear step solves a reduced system of equations. Several challenging examples are presented, and the results demonstrate the robustness and computational efficiency of the proposed method.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1436
Author(s):  
Jacobo Baldonedo ◽  
José R. Fernández ◽  
José A. López-Campos

In this paper, we deal with the numerical approximation of some porous-thermoelastic problems. Since the inertial effects are assumed to be negligible, the resulting motion equations are quasistatic. Then, by using the finite element method and the implicit Euler scheme, a fully discrete approximation is introduced. We prove a discrete stability property and a main error estimates result, from which we conclude the linear convergence under appropriate regularity conditions on the continuous solution. Finally, several numerical simulations are shown to demonstrate the accuracy of the approximation, the behavior of the solution and the decay of the discrete energy.


2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Natalija Tumanova ◽  
Raimondas Čiegis ◽  
Mečislavas Meilūnas

AbstractThis paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved. The identifiability analysis of the parameters of deep centers is performed and the fitting of the model to experimental data is done by using the genetic optimization algorithm. Results of numerical experiments are presented.


2013 ◽  
Vol 3 (2) ◽  
pp. 138-153 ◽  
Author(s):  
Y. Tang ◽  
Y. Hua

AbstractA quadratic optimal control problem governed by parabolic equations with integral constraints is considered. A fully discrete finite element scheme is constructed for the optimal control problem, with finite elements for the spatial but the backward Euler method for the time discretisation. Some superconvergence results of the control, the state and the adjoint state are proved. Some numerical examples are performed to confirm theoretical results.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 87 ◽  
Author(s):  
Jacobo Baldonedo ◽  
José R. Fernández ◽  
Abraham Segade

In this work, we study a bone remodeling model used to reproduce the phenomenon of osseointegration around endosseous implants. The biological problem is written in terms of the densities of platelets, osteogenic cells, and osteoblasts and the concentrations of two growth factors. Its variational formulation leads to a strongly coupled nonlinear system of parabolic variational equations. An existence and uniqueness result of this variational form is stated. Then, a fully discrete approximation of the problem is introduced by using the finite element method and a semi-implicit Euler scheme. A priori error estimates are obtained, and the linear convergence of the algorithm is derived under some suitable regularity conditions and tested with a numerical example. Finally, one- and two-dimensional numerical results are presented to demonstrate the accuracy of the algorithm and the behavior of the solution.


2019 ◽  
Vol 53 (2) ◽  
pp. 551-583 ◽  
Author(s):  
Konstantinos Chrysafinos

Fully-discrete approximations of the Allen–Cahn equation are considered. In particular, we consider schemes of arbitrary order based on a discontinuous Galerkin (in time) approach combined with standard conforming finite elements (in space). We prove that these schemes are unconditionally stable under minimal regularity assumptions on the given data. We also prove best approximation a-priori error estimates, with constants depending polynomially upon (1/ε) by circumventing Gronwall Lemma arguments. The key feature of our approach is a carefully constructed duality argument, combined with a boot-strap technique.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuping Zeng ◽  
Kunwen Wen ◽  
Fen Liang ◽  
Huijian Zhu

We introduce and analyze a weakly overpenalized symmetric interior penalty method for solving the heat equation. We first provide optimal a priori error estimates in the energy norm for the fully discrete scheme with backward Euler time-stepping. In addition, we apply elliptic reconstruction techniques to derive a posteriori error estimators, which can be used to design adaptive algorithms. Finally, we present two numerical experiments to validate our theoretical analysis.


1995 ◽  
Vol 05 (01) ◽  
pp. 159-174 ◽  
Author(s):  
MAXIM POLIASHENKO ◽  
CYRUS K. AIDUN

Discrete schemes, used to perform time integration of ODE’s, are expected to exhibit qualitatively ‘true’ dynamics in terms of the solutions and their stability. In past years, it has been discovered that such discretizations may cause spurious steady states and some explicit schemes may produce ‘computational chaos.’ In this study, we show that implicit time integration schemes, such as the backward Euler method, can also produce computationally chaotic solutions. Furthermore, we show that the opposite phenomenon may also take place both for explicit and for implicit schemes: computationally generated ‘spurious order’ may replace the true chaotic solution before the scheme becomes linearly unstable. The numerical solution may become chaotic again as the discretization step is further increased. The spurious computational order and chaos are discussed by solving low-dimensional dynamical systems, as well as a large system of ODE representing the solution to the Navier-Stokes equation. Our results support the point of view that the deviations in the behavior of the computed solution from the true solution has deterministic character with the time step playing the role of an artificial bifurcation parameter.


Sign in / Sign up

Export Citation Format

Share Document