scholarly journals Analysis of a Poro-Thermo-Viscoelastic Model of Type III

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1214 ◽  
Author(s):  
Noelia Bazarra ◽  
José A. López-Campos ◽  
Marcos López ◽  
Abraham Segade ◽  
José R. Fernández

In this work, we numerically study a thermo-mechanical problem arising in poro-viscoelasticity with the type III thermal law. The thermomechanical model leads to a linear system of three coupled hyperbolic partial differential equations, and its weak formulation as three coupled parabolic linear variational equations. Then, using the finite element method and the implicit Euler scheme, for the spatial approximation and the discretization of the time derivatives, respectively, a fully discrete algorithm is introduced. A priori error estimates are proved, and the linear convergence is obtained under some suitable regularity conditions. Finally, some numerical results, involving one- and two-dimensional examples, are described, showing the accuracy of the algorithm and the dependence of the solution with respect to some constitutive parameters.

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1436
Author(s):  
Jacobo Baldonedo ◽  
José R. Fernández ◽  
José A. López-Campos

In this paper, we deal with the numerical approximation of some porous-thermoelastic problems. Since the inertial effects are assumed to be negligible, the resulting motion equations are quasistatic. Then, by using the finite element method and the implicit Euler scheme, a fully discrete approximation is introduced. We prove a discrete stability property and a main error estimates result, from which we conclude the linear convergence under appropriate regularity conditions on the continuous solution. Finally, several numerical simulations are shown to demonstrate the accuracy of the approximation, the behavior of the solution and the decay of the discrete energy.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 87 ◽  
Author(s):  
Jacobo Baldonedo ◽  
José R. Fernández ◽  
Abraham Segade

In this work, we study a bone remodeling model used to reproduce the phenomenon of osseointegration around endosseous implants. The biological problem is written in terms of the densities of platelets, osteogenic cells, and osteoblasts and the concentrations of two growth factors. Its variational formulation leads to a strongly coupled nonlinear system of parabolic variational equations. An existence and uniqueness result of this variational form is stated. Then, a fully discrete approximation of the problem is introduced by using the finite element method and a semi-implicit Euler scheme. A priori error estimates are obtained, and the linear convergence of the algorithm is derived under some suitable regularity conditions and tested with a numerical example. Finally, one- and two-dimensional numerical results are presented to demonstrate the accuracy of the algorithm and the behavior of the solution.


Meccanica ◽  
2021 ◽  
Author(s):  
Noelia Bazarra ◽  
Alberto Castejón ◽  
José R. Fernández ◽  
Ramón Quintanilla

AbstractIn this work we study, from the numerical point of view, a one-dimensional thermoelastic problem where the thermal law is of type III. Quasi-static microvoids are also assumed within the model. The variational formulation leads to a coupled linear system made of variational equations and it is written in terms of the velocity, the volume fraction and the temperature. Fully discrete approximations are introduced by using the finite element method and the backward Euler method. A discrete stability property and a priori error estimates are proved, deriving the linear convergence under adequate additional regularity. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution.


2012 ◽  
Vol 23 (5) ◽  
pp. 635-657 ◽  
Author(s):  
J. R. FERNÁNDEZ ◽  
J. M. GARCÍA-AZNAR ◽  
R. MARTÍNEZ

Although in recent years bone piezoelectricity has been normally neglected, lately a new interest has appeared to show the importance of bone piezoelectricity in wet bone's complex response to loading. Here we numerically study a problem, including a strain-adaptive bone remodelling and the piezoelectricity. Its variational formulation leads to a coupled system composed of two linear variational equations for displacements and electric potential, and a parabolic variational inequality for the apparent density. Fully discrete approximations are now introduced by using the finite element method to approximate spatial variable and the explicit Euler scheme to discretise time derivatives. Some a priori error estimates are proved and the linear convergence of the algorithm is deduced under additional regularity conditions. Finally, some one- and two-dimensional numerical simulations are described to show the accuracy of the proposed algorithm and the behaviour of the solution.


2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
Xueyi Ma ◽  
Yu Wang ◽  
Jian Zhao

Heterogeneous materials are widely applied in many fields. Owing to the spatial variation of its constitutive parameters, the mechanical characterization of heterogeneous materials is very important. The virtual fields method has been used to identify the constitutive parameters of materials. However, there is a limitation: constitutive parameters of one material have to be a priori; then, constitutive parameters of the other one can be identified. Aiming at this limitation, this article presents a method to identify the constitutive parameters of heterogeneous orthotropic bimaterials under the condition that constitutive parameters of both materials are all unknown from a single test. A constitutive parameter identification method of orthotropic bimaterials based on optimized virtual field and digital image correlation is proposed. The feasibility of this method is verified by simulating the deformation fields of a two-layer material under three-point bending load. The results of numerical experiments with FEM simulations show that the weighted relative error of the constitutive parameter is less than 1%. The results suggest that the variation coefficient-to-noise ratio can perform a priori evaluation of a confidence interval on the identified stiffness components. The results of numerical experiments with DIC simulations show that the weighted relative error is 1.44%, which is due to the noise in the strain data calculated by DIC method.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 373 ◽  
Author(s):  
Yuri Álvarez López ◽  
María García Fernández ◽  
Raphael Grau ◽  
Fernando Las-Heras

This contribution presents a simple and fast Synthetic Aperture Radar (SAR)-based technique for microwave imaging and material characterization from microwave measurements acquired in tomographic systems. SAR backpropagation is one of the simplest and fastest techniques for microwave imaging. However, in the case of heterogeneous objects and media, a priori information about the constitutive parameters (conductivity, permittivity) is needed for an accurate imaging. In some cases, a first guess of the constitutive parameters can be extracted from an uncorrected SAR image, and then the estimated parameters can be introduced in a second step to correct the SAR image. The main advantage of this methodology is that there is little or no need for a priori information about the object to be imaged. Besides, calculation time is not significantly increased with respect to conventional SAR, thus allowing real-time imaging capabilities. The methodology has been validated by means of measurements acquired in a cylindrical setup.


2018 ◽  
Vol 40 (1) ◽  
pp. 87-108
Author(s):  
Eberhard Bänsch ◽  
Markus Gahn

Abstract In this paper we introduce and analyze a mixed finite-element approach for a coupled bulk-surface problem of second order with a Wentzell boundary condition. The problem is formulated on a domain with a curved smooth boundary. We introduce a mixed formulation that is equivalent to the usual weak formulation. Furthermore, optimal a priori error estimates between the exact solution and the finite-element approximation are derived. To this end, the curved domain is approximated by a polyhedral domain introducing an additional geometrical error that has to be bounded. A computational result confirms the theoretical findings.


SPE Journal ◽  
2009 ◽  
Vol 15 (02) ◽  
pp. 526-544 ◽  
Author(s):  
R.M.. M. Younis ◽  
H.A.. A. Tchelepi ◽  
K.. Aziz

Summary Growing interest in understanding, predicting, and controlling advanced oil-recovery methods emphasizes the importance of numerical methods that exploit the nature of the underlying physics. The fully implicit method offers unconditional stability of the discrete approximations. This stability comes at the expense of transferring the inherent physical stiffness onto the coupled nonlinear residual equations that are solved at each timestep. Current reservoir simulators apply safeguarded variants of Newton's method that can neither guarantee convergence nor provide estimates of the relation between convergence rate and timestep size. In practice, timestep chops become necessary and are guided heuristically. With growing complexity, such as in thermally reactive compositional flows, convergence difficulties can lead to substantial losses in computational effort and prohibitively small timesteps. We establish an alternative class of nonlinear iteration that converges and associates a timestep to each iteration. Moreover, the linear solution process within each iteration is performed locally. By casting the nonlinear residual equations for a given timestep as an initial-value problem, we formulate a continuation-based solution process that associates a timestep size with each iteration. Subsequently, no iterations are wasted and a solution is always attainable. Moreover, we show that the rate of progression is as rapid as that for a convergent standard Newton method. Moreover, by exploiting the local nature of nonlinear wave propagation typical to multiphase-flow problems, we establish a linear solution process that performs computation only where necessary. That is, given a linear convergence tolerance, we identify a minimal subset of solution components that will change by more than the specified tolerance. Using this a priori criterion, each linear step solves a reduced system of equations. Several challenging examples are presented, and the results demonstrate the robustness and computational efficiency of the proposed method.


2014 ◽  
Vol 14 (2) ◽  
pp. 231-255 ◽  
Author(s):  
Christian Mollet

Abstract. This paper is concerned with the stability of Petrov–Galerkin discretizations with application to parabolic evolution problems in space-time weak form. We will prove that the discrete inf-sup condition for an a priori fixed Petrov–Galerkin discretization is satisfied uniformly under standard approximation and smoothness conditions without any further coupling between the discrete trial and test spaces for sufficiently regular operators. It turns out that one needs to choose different discretization levels for the trial and test spaces in order to obtain a positive lower bound for the discrete inf-sup condition which is independent of the discretization levels. In particular, we state the required number of extra layers in order to guarantee uniform boundedness of the discrete inf-sup constants explicitly. This general result will be applied to the space-time weak formulation of parabolic evolution problems as an important model example. In this regard, we consider suitable hierarchical families of discrete spaces. The results apply, e.g., for finite element discretizations as well as for wavelet discretizations. Due to the Riesz basis property, wavelet discretizations allow for optimal preconditioning independently of the grid spacing. Moreover, our predictions on the stability, especially in view of the dependence on the refinement levels w.r.t. the test and trial spaces, are underlined by numerical results. Furthermore, it can be observed that choosing the same discretization levels would, indeed, lead to stability problems.


Author(s):  
Igor Bock

We deal with an initial-boundary value problem describing the perpendicular vibrations of an anisotropic viscoelastic plate free on its boundary and with a rigid inner obstacle. A weak formulation of the problem is in the form of the hyperbolic variational inequality. We solve the problem using the discretizing the time variable. The elliptic variational inequalities for every time level are uniquely solved. We derive the a priori estimates and the convergence of the sequence of segment line functions to a variational solution of the considered problem.


Sign in / Sign up

Export Citation Format

Share Document