Using Variations in the Frequency of a Ring Oscillator to Measure the Thermal Resistance of Digital Integrated Circuits

2018 ◽  
Vol 61 (2) ◽  
pp. 154-160
Author(s):  
V. A. Sergeev ◽  
Ya. G. Teten’kin
Author(s):  
Iaroslav G. Tetenkin ◽  
◽  
Viacheslav A. Sergeev ◽  

The article describes a brief analysis of linear thermal models of digital integrated circuits (DIC) and algorithms for determining the parameters of thermal equivalent circuits of DIC-based on transient thermal characteristics (TTC). It distinguishes the difficulties in implementing the algorithm for determining the thermal parameters of the DIC-based on the method of structure functions according to the JESD51-14 document and describes a new method for measuring the FPGA TTC by changing the frequency of a ring oscillator embedded in the FPGA logic elements. It also considers the hardware-software complex used for measuring the thermal parameters of FPGAs and proposes a simple algorithm for calculating the thermal parameters of FPGAs based on the analysis of the FPGA TTC using methods of numerical differentiation. The specified algorithm for calculating thermal parameters has been tested on the example of FPGA TTC EPM240T100C5 and Lattice M4A5-64/32.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550094 ◽  
Author(s):  
Jizhong Shen ◽  
Liang Geng ◽  
Xuexiang Wu

Flip-flop is an important unit in digital integrated circuits, whose characteristics have a deep impact on the performance of the circuits. To reduce the power dissipation of flip-flops, clock triggering edge control technique is proposed, which is feasible to block one or two triggering edges of a clock cycle if they are redundant in dual-edge pulse-triggered flip-flops (DEPFFs). Based on this technique, redundant pulses can be suppressed when the input stays unchanged, and all the redundant triggerings are eliminated to reduce redundant transitions at the internal nodes of the flip-flop, so the power dissipation can be decreased. Then a novel DEPFF based on clock triggering edge control (DEPFF-CEC) technique is proposed. Based on the SMIC 65-nm technology, the post layout simulation results show that the proposed DEPFF-CEC gains an improvement of 8.03–39.83% in terms of power dissipation when the input switching activity is 10%, as compared with its counterparts. Thus, it is suitable for energy-efficient designs whose input data switching activity is low.


Sign in / Sign up

Export Citation Format

Share Document