A conserved RNA recognition motif (RRM) domain of Brassica napus FCA improves cotton fiber quality and yield by regulating cell size

2011 ◽  
Vol 30 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Fan Sun ◽  
Chuanliang Liu ◽  
Chaojun Zhang ◽  
Weiwei Qi ◽  
Xueyan Zhang ◽  
...  
Biochemistry ◽  
2008 ◽  
Vol 47 (24) ◽  
pp. 6437-6450 ◽  
Author(s):  
Kanako Kuwasako ◽  
Mari Takahashi ◽  
Naoya Tochio ◽  
Chikage Abe ◽  
Kengo Tsuda ◽  
...  

2017 ◽  
Author(s):  
Yimei Lu ◽  
Liangzhong Lim ◽  
Jianxing Song

Abstract526-residue FUS functions to self-assemble into reversible droplets/hydrogels, which could be further solidified into pathological fibrils. FUS is composed of N-terminal low-sequence complexity (LC); RNA-recognition motif (RRM) and C-terminal LC domains. FUS belongs to an emerging category of proteins which are capable of forming membraneless organelles in cells via phase separation. On the other hand, eukaryotic cells contain a large network of internal membrane systems. Therefore, it is of fundamental importance to address whether membraneless organelles can interact with membranes. Here we attempted to explore this by NMR HSQC titrations of three FUS domains with gradual addition of DMPC/DHPC bicelle, which mimics the bilayer membrane. We found that both N- and C-terminal LC domains showed no significant interaction with bicelle, but its well-folded RRM domain does dynamically interact with bicelle with an interface opposite to that for binding nucleic acids including RNA and ssDNA. If this in vitro observation also occurs in cells, to interact with membrane might represent a mechanism for dynamically organizing membraneless organelles to membranes to facilitate their physiological functions.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5163 ◽  
Author(s):  
Humberto Fernandes ◽  
Honorata Czapinska ◽  
Katarzyna Grudziaz ◽  
Janusz M. Bujnicki ◽  
Martyna Nowacka

Acinus is an abundant nuclear protein involved in apoptosis and splicing. It has been implicated in inducing apoptotic chromatin condensation and DNA fragmentation during programmed cell death. Acinus undergoes activation by proteolytic cleavage that produces a truncated p17 form that comprises only the RNA recognition motif (RRM) domain. We have determined the crystal structure of the human Acinus RRM domain (AcRRM) at 1.65 Å resolution. It shows a classical four-stranded antiparallel β-sheet fold with two flanking α-helices and an additional, non-classical α-helix at the C-terminus, which harbors the caspase-3 target sequence that is cleaved during Acinus activation. In the structure, the C-terminal α-helix partially occludes the potential ligand binding surface of the β-sheet and hypothetically shields it from non-sequence specific interactions with RNA. Based on the comparison with other RRM-RNA complex structures, it is likely that the C-terminal α-helix changes its conformation with respect to the RRM core in order to enable RNA binding by Acinus.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 273
Author(s):  
Yoshita Srivastava ◽  
Rachel Bonn-Breach ◽  
Sai Shashank Chavali ◽  
Geoffrey M. Lippa ◽  
Jermaine L. Jenkins ◽  
...  

RNA plays a central role in all organisms and can fold into complex structures to orchestrate function. Visualization of such structures often requires crystallization, which can be a bottleneck in the structure-determination process. To promote crystallization, an RNA-recognition motif (RRM) of the U1A spliceosomal protein has been co-opted as a crystallization module. Specifically, the U1-snRNA hairpin II (hpII) single-stranded loop recognized by U1A can be transplanted into an RNA target to promote crystal contacts and to attain phase information via molecular replacement or anomalous diffraction methods using selenomethionine. Herein, we produced the F37M/F77M mutant of U1A to augment the phasing capability of this powerful crystallization module. Selenomethionine-substituted U1A(F37M/F77M) retains high affinity for hpII (KD of 59.7 ± 11.4 nM). The 2.20 Å resolution crystal structure reveals that the mutated sidechains make new S-π interactions in the hydrophobic core and are useful for single-wavelength anomalous diffraction. Crystals were also attained of U1A(F37M/F77M) in complex with a bacterial preQ1-II riboswitch. The F34M/F37M/F77M mutant was introduced similarly into a lab-evolved U1A variant (TBP6.9) that recognizes the internal bulged loop of HIV-1 TAR RNA. We envision that this short RNA sequence can be placed into non-essential duplex regions to promote crystallization and phasing of target RNAs. We show that selenomethionine-substituted TBP6.9(F34M/F37M/F77M) binds a TAR variant wherein the apical loop was replaced with a GNRA tetraloop (KD of 69.8 ± 2.9 nM), laying the groundwork for use of TBP6.9(F34M/F37M/F77M) as a crystallization module. These new tools are available to the research community.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Yinjiao Zhao ◽  
Ya Du ◽  
Qinglan Ge ◽  
Fang Yan ◽  
Shu Wei

Summary The Dazl (deleted in azoospermia-like) gene encodes an RNA-binding protein containing an RNA recognition motif (RRM) and a DAZ motif. Dazl is essential for gametogenesis in vertebrates. In this study, we report the cloning of Dazl cDNA from Cynops cyanurus. Ccdazl mRNA showed a germline-specific expression pattern as expected. Ccdazl expression gradually decreased during oogenesis, suggesting that it may be involved in oocyte development. Phylogenetic analysis revealed that the Ccdazl protein shares conserved motifs/domains with Dazl proteins from other species. Cloning of Ccdazl provides a new tool to carry out comparative studies of germ cell development in amphibians.


ChemBioChem ◽  
2019 ◽  
Vol 20 (7) ◽  
pp. 931-939 ◽  
Author(s):  
Yi‐Ting Sun ◽  
Matthew D. Shortridge ◽  
Gabriele Varani

Sign in / Sign up

Export Citation Format

Share Document