A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars

2010 ◽  
Vol 38 (2) ◽  
pp. 1237-1249 ◽  
Author(s):  
Loredana F. Ciarmiello ◽  
Pasquale Piccirillo ◽  
Giovanni Pontecorvo ◽  
Antonio De Luca ◽  
Ioannis Kafantaris ◽  
...  
Keyword(s):  
2014 ◽  
Vol 62 (48) ◽  
pp. 11767-11775 ◽  
Author(s):  
Melanie L. Downs ◽  
Aida Semic-Jusufagic ◽  
Angela Simpson ◽  
Joan Bartra ◽  
Montserrat Fernandez-Rivas ◽  
...  

Author(s):  
Bing Liu ◽  
Yuan Chang ◽  
Xinping Sui ◽  
Ruifang Wang ◽  
Zixuan Liu ◽  
...  

Plant Disease ◽  
2003 ◽  
Vol 87 (3) ◽  
pp. 315-315 ◽  
Author(s):  
A. Belisario ◽  
M. Maccaroni ◽  
A. M. Vettraino ◽  
A. Vannini

English (Persian) walnut (Juglans regia), among the most widely cultivated species of Juglans worldwide, is cultivated primarily for fruit production but also for timber. In the last 10 years, walnut decline causing leaf yellowing, sparse foliage, overall decline, and plant death has increased in Italian commercial orchards. In Italy, Phytophthora cactorum, P. cambivora, P. cinnamomi, and P. cryptogea are associated with this disease (1,4). Over the last 5 years, P. cinnamomi was the most widely isolated and destructive species (1). Recently, a different species of Phytophthora was isolated from diseased roots and soil from around lateral roots of 10 declining trees in two orchards in the Veneto Region of northern Italy. Another species of Phytophthora was isolated consistently from rotted roots of declining walnut trees in two orchards in the Campania Region of southern Italy. Phytophthora spp. were isolated directly from plant material or Rhododendron spp. leaf baiting on soil samples with PARBhy selective medium (10 mg of pimaricin, 250 mg of ampicillin [sodium salt], 10 mg of rifampicin, 50 mg of hymexazol, 15 mg of benomyl, 15 g of malt extract, 20 g of agar in 1,000 ml of H2O). Two species of Phytophthora were identified based on morphological and cultural characteristics (2). The species from trees in the Veneto Region was identified as P. nicotianae. All isolates produced papillate, spherical to obturbinate, occasionally caducous sporangia with short pedicels, terminal and intercalary chlamydospores, and were mating type A2. The species isolated from trees in the Campania Region was identified as P.citricola. Isolates were homothallic, produced semipapillate, persistent, obclavate to obpyriform sporangia, occasionally with two apices, and antheridia paragynous. Identifications were confirmed by comparing restriction fragment length polymorphism patterns of the internal transcribed spacer region of rDNA with those obtained from previously identified species of Phytophthora. Pathogenicity of two isolates each of P. citricola and P. nicotianae was tested on 2-year-old potted walnut seedlings. Inocula were prepared by inoculating sterilized millet seeds moistened with V8 broth with plugs of mycelium and incubated for 4 weeks at 20°C in the dark. Infested seeds were added to potting soil at a rate of 3% (wt/vol). One day later, pots were flooded for 48 h to promote sporulation. Ten noninoculated seedlings were used as the control. Symptoms were assessed 2 months after inoculation. Seedlings inoculated with P. nicotianae developed necrosis of feeder and lateral roots, but only limited infection of taproots. Seedlings inoculated with P. citricola developed necroses at the insertion points of lateral roots. All four isolates produced visible damage to lateral roots on inoculated plants. P. nicotianae and P. citricola were reisolated from respectively infected roots. Results from these inoculations confirmed P. nicotianae and P. citricola as root pathogens of English walnut. Both species were associated with walnut decline as reported in the United States (3). To our knowledge, this is the first report of P. nicotianae and P. citricola on J. regia in Europe. References: (1) A. Belisario et al. Petria 11:149. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (3) M. E. Matheron and S. M. Mircetich. Phytopathology 75:977, 1985. (4) A. M. Vettraino et al. Plant Dis. 86:328, 2002.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1504
Author(s):  
Abdul Rafey ◽  
Adnan Amin ◽  
Muhammad Kamran ◽  
Uzma Haroon ◽  
Kainat Farooq ◽  
...  

The pervasiveness of oral bacterial infections in diabetic patients is a serious health concern that may produce severe complications. We investigated 26 Ayurvedic medicinal plants traditionally used for treatment of the oral bacterial infections with the aim to look for new promising drug leads that can be further employed for herbal formulation design. The plants were grouped into three categories based on traditional usage. All plant extracts were examined for antibacterial, antibiofilm and antiquorum-sensing properties. The plants with significant activities including Juglans regia, Syzygium aromaticum, Eruca sativa, Myristica fragrans, Punica granatum and Azadirachta indica were further analyzed using HPLC-DAD-QToF and GC-MS. In silico and in vitro activity was evaluated for selected constituents. Finally, it could be concluded that eugenol and 2-phenylethylisothiocyanate are major contributors towards inhibition of bacterial biofilms and quorum sensing.


Sign in / Sign up

Export Citation Format

Share Document