scholarly journals Analysis of Plant Origin Antibiotics against Oral Bacterial Infections Using In Vitro and In Silico Techniques and Characterization of Active Constituents

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1504
Author(s):  
Abdul Rafey ◽  
Adnan Amin ◽  
Muhammad Kamran ◽  
Uzma Haroon ◽  
Kainat Farooq ◽  
...  

The pervasiveness of oral bacterial infections in diabetic patients is a serious health concern that may produce severe complications. We investigated 26 Ayurvedic medicinal plants traditionally used for treatment of the oral bacterial infections with the aim to look for new promising drug leads that can be further employed for herbal formulation design. The plants were grouped into three categories based on traditional usage. All plant extracts were examined for antibacterial, antibiofilm and antiquorum-sensing properties. The plants with significant activities including Juglans regia, Syzygium aromaticum, Eruca sativa, Myristica fragrans, Punica granatum and Azadirachta indica were further analyzed using HPLC-DAD-QToF and GC-MS. In silico and in vitro activity was evaluated for selected constituents. Finally, it could be concluded that eugenol and 2-phenylethylisothiocyanate are major contributors towards inhibition of bacterial biofilms and quorum sensing.

Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57173 ◽  
Author(s):  
Mara Colombo ◽  
Giovanna De Vecchi ◽  
Laura Caleca ◽  
Claudia Foglia ◽  
Carla B. Ripamonti ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Abdul Rafey ◽  
Aqsa Batool ◽  
Muhammad Kamran ◽  
Samiullah Khan ◽  
Muhammad Akram ◽  
...  

Periodontitis is an important health concern that is associated with long term complications. Development of resistance to antibiotics limits the treatment options in periodontitis. We investigated Thymus linearis essential oil for treatment of periodontitis. The essential oil was collected using hydrodistillation and characterized using GC-MS. The constituents were further analyzed for druglikeness, ADMET properties and molecular docking using transcription regulators 2UV0 and 3QP5. The GC-MS results revealed that carvacrol was a major constituent (76.26%) followed by caryophyllene oxide (6.83%) and L-borneol (6.08%). The in vitro antimicrobial studies showed significant inhibition against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa (MIC range 0.024 –0.312μg/mL). The essential oil showed a good inhibition of bacterial biofilm produced by S. aureus (72%) and S. epidermidis (70%). Finally, the antiquorum sensing property (30 mm zone of inhibition) was recorded with violacein inhibition (58%). Based on in silico and in vitro findings, it was concluded that T. linearis essential oil can be used for the treatment of periodontal infections.


2019 ◽  
Vol 140 ◽  
pp. 69-77 ◽  
Author(s):  
Alireza Bonakdar ◽  
Fatemeh Sahebazzamani ◽  
Mohammad Javad Rasaee ◽  
Saman Hosseinkhani ◽  
Fatemeh Rahbarizadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document