Genetic diversity and phylogenetic analysis of blackbuck (Antilope cervicapra) in southern India

2021 ◽  
Vol 48 (2) ◽  
pp. 1255-1268
Author(s):  
Ranjana Bhaskar ◽  
Praveen Kanaparthi ◽  
Rengasamy Sakthivel
Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Badreddine Sijilmassi ◽  
Abdelkarim Filali-Maltouf ◽  
Hassan Boulahyaoui ◽  
Aymane Kricha ◽  
Kenza Boubekri ◽  
...  

A total of 14 Rhizobium strains were isolated from lentil accessions grown at the ICARDA experimental research station at Marchouch in Morocco and used for molecular characterization and symbiotic efficiency assessment. Individual phylogenetic analysis using the 16S rRNA gene, house-keeping genes rpoB, recA, and gyrB, and symbiotic genes nodD and nodA along with Multilocus Sequence Analysis (MLSA) of the concatenated genes (16S rRNA-rpoB-recA-gyrB) was carried out for the identification and clustering of the isolates. The symbiotic efficiency of the strains was assessed on three Moroccan lentil cultivars (Bakria, Chakkouf, and Zaria) based on the number of nodules, plant height, plant dry weight, and total nitrogen content in leaves. The results showed that the individual phylogenetic analysis clustered all the strains into Rhizobium laguerreae and Rhizobium leguminosarum with sequence similarity ranging from 94 to 100%, except one strain which clustered with Mesorhizobium huakuii with sequence similarity of 100%. The MLSA of the concatenated genes and the related percentages of similarity clustered these strains into two groups of Rhizobium species, with one strain as a new genospecies when applying the threshold of 96%. For symbiotic efficiency, the Bakria variety showed the best association with 10 strains compared to its non-inoculated control (p-value ≤ 0.05), followed by Chakkouf and Zaria. The present study concluded that the genetic diversity and the symbiotic efficiency of Rhizobium strains appeared to be mainly under the control of the lentil genotypes.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


2014 ◽  
Vol 43 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Charfeddine Gharsallah ◽  
Amina Ben Halima ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

2021 ◽  
Author(s):  
Juliana D Siqueira ◽  
Livia R Goes ◽  
Brunna M Alves ◽  
Pedro S de Carvalho ◽  
Claudia Cicala ◽  
...  

Abstract Numerous factors have been identified to influence susceptibility to SARS-CoV-2 infection and disease severity. Cancer patients are more prone to clinically evolve to more severe COVID-19 conditions, but the determinants of such a more severe outcome remain largely unknown. We have determined the full-length SARS-CoV-2 genomic sequences of cancer patients and healthcare workers (non-cancer controls) by deep sequencing and investigated the within-host viral population of each infection, quantifying intrahost genetic diversity. Naso- and oropharyngeal SARS-CoV-2+ swabs from 57 cancer patients and 14 healthcare workers from the Brazilian National Cancer Institute were collected in April–May 2020. Complete genome amplification using ARTIC network V3 multiplex primers was performed followed by next-generation sequencing. Assemblies were conducted in Geneious R11, where consensus sequences were extracted and intrahost single nucleotide variants were identified. Maximum likelihood phylogenetic analysis was performed using PhyMLv.3.0 and lineages were classified using Pangolin and CoV-GLUE. Phylogenetic analysis showed that all but one strain belonged to clade B1.1. Four genetically linked mutations known as the globally dominant SARS-CoV-2 haplotype (C241T, C3037T, C14408T and A23403G) were found in the majority of consensus sequences. SNV signatures of previously characterized Brazilian genomes were also observed in most samples. Another 85 SNVs were found at a lower frequency (1.4-19.7%) among the consensus sequences. Cancer patients displayed a significantly higher intrahost viral genetic diversity compared to healthcare workers. This difference was independent of SARS-CoV-2 Ct values obtained at the diagnostic tests, which did not differ between the two groups. The most common nucleotide changes of intrahost SNVs in both groups were consistent with APOBEC and ADAR activities. Intrahost genetic diversity in cancer patients was not associated with disease severity, use of corticosteroids, or use of antivirals, characteristics that could influence viral diversity. Moreover, the presence of metastasis, either in general or specifically in the lung, was not associated with intrahost diversity among cancer patients. Cancer patients carried significantly higher numbers of minor variants compared to non-cancer counterparts. Further studies on SARS-CoV-2 diversity in especially vulnerable patients will shed light onto the understanding of the basis of COVID-19 different outcomes in humans.


Author(s):  
Andrea Highfield ◽  
Angela Ward ◽  
Richard Pipe ◽  
Declan C. Schroeder

Abstract Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina have been isolated from various hypersaline environments in Israel, South Africa, Namibia and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL and tufA and their application to the study of Dunaliella evaluated. Novel isolates have been identified and phylogenetic analyses have shown the need for clarification on the taxonomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as defined by a robust phylogeny based on the concatenation of four genes. This study further demonstrates the considerable genetic diversity within D. salina and the potential of genetic analyses for aiding in the selection of prospective economically important strains.


2007 ◽  
Vol 88 (10) ◽  
pp. 2662-2669 ◽  
Author(s):  
Ola Forslund

Human papillomaviruses (HPVs) of the genera Betapapillomavirus and Gammapapillomavirus are common on human skin. Sequencing of subgenomic amplicons of cutaneous HPVs has revealed a large number of novel putative HPV types within these genera. Phylogenetic analysis based on these amplicons revealed 133 putative HPV types with <90 % sequence identity to any known HPV type or to each other. As there are already 34 characterized HPV types described within the genera Betapapillomavirus and Gammapapillomavirus, they appear to be the most genetically diverse of the HPVs, apparently comprising at least 167 different HPV types.


2021 ◽  
Author(s):  
Qian Yang ◽  
Dongmei Yan ◽  
Yang Song ◽  
Shuangli Zhu ◽  
Yun He ◽  
...  

Abstract Background Coxsackievirus B3 (CVB3) has emerged as an active pathogen in myocarditis, aseptic meningitis, hand, foot, and mouth disease (HFMD), and pancreatitis, and is a heavy burden on public health. However, CVB3 has not been systematically analyzed with regard to whole-genome diversity and recombination. Therefore, this study was undertaken to systematically examine the genetic characteristics of CVB3 based on its whole genome. Methods We combined CVB3 isolates from our national HFMD surveillance and global sequences retrieved from GenBank. Phylogenetic analysis was performed to examine the whole genome variety and recombination forms of CVB3 in China and worldwide. Results Phylogenetic analysis showed that CVB3 strains isolated worldwide could be classified into groups A–E based on the sequence of the entire VP1 region. The predominant CVB3 strains in China belonged to group D, whereas group E CVB3 might be circulated globally compared to other groups. The average nucleotide substitution rate in the P1 region of CVB3 was 4.82 × 10−3 substitutions/site/year. Myocarditis was more common with group A. Groups C and D presented more cases of acute flaccid paralysis, and group D may be more likely to cause HFMD. Multiple recombination events were detected among CVB3 variants, and there were twenty-three recombinant lineages of CVB3 circulating worldwide. Conclusions Overall, this study provides full-length genomic sequences of CVB3 isolates with a wide geographic distribution over a long-term time scale in China, which will be helpful for understanding the evolution of this pathogen. Simultaneously, continuous surveillance of CVB3 is indispensable to determine its genetic diversity in China as well as worldwide.


2003 ◽  
Vol 69 (10) ◽  
pp. 5782-5786 ◽  
Author(s):  
Tomoko Nishida ◽  
Hirokazu Kimura ◽  
Mika Saitoh ◽  
Michiyo Shinohara ◽  
Masahiko Kato ◽  
...  

ABSTRACT Noroviruses (NVs) cause many cases of oyster- or clam-associated gastroenteritis in various countries. We collected 191 samples from Japanese oysters intended for raw consumption that had been harvested from the sea in two different areas between December 2001 and February 2002. To detect, quantitate, and phylogenetically analyze the NV genome in purified concentrates from the stomachs and digestive diverticula of these oysters, we amplified the NV capsid gene by reverse transcription-PCR. Phylogenetic analysis was performed by using the neighbor-joining method. We detected the NV genome in 17 of 191 oysters (9%). Phylogenetic analysis indicated genogroup I (Norwalk virus type) in 3 of the 17 oysters and genogroup II (Snow Mountain virus type) in the other 14. Both genogroups showed wide genetic diversity. To quantify the NV capsid gene in these oysters, we performed real-time PCR using genogroup-specific probes. More than 102 copies of the NV genome were detected in 11 of 17 oysters. The results suggested that about 10% of Japanese oysters intended for raw consumption harbored NVs, and more than 50% of those oysters in which NVs were detected had a large amount.


Sign in / Sign up

Export Citation Format

Share Document