M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways

Author(s):  
Si-Min Zhang ◽  
Chuan-Yuan Wei ◽  
Qiang Wang ◽  
Lu Wang ◽  
Lu Lu ◽  
...  
1997 ◽  
Vol 15 (2) ◽  
pp. 130
Author(s):  
N. Hayashi ◽  
T. Kakinuma ◽  
S. Kawara ◽  
K. Takehara ◽  
K. Tamaki ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2593-2593
Author(s):  
Hongbo Lu ◽  
Venkata Lokesh Battula ◽  
Yuexi Shi ◽  
Richard B Lock ◽  
Suzanne Spong ◽  
...  

Abstract Abstract 2593 Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of proteins involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in 75% of acute lymphoblastic leukemia (Br J Haematol, 2007; 138(6):740–8), and that increased expression of CTGF is associated with inferior outcome in B-ALL (Blood, 2007; 109(7):3080–3). In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knock-down CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA (479.3±37.2 and 57.3±5.9 copies per 100 copies of ABL1, respectively). Silencing of CTGF (CTGF-knockdown, CTGF-kd) resulted in significant suppression of leukemia cell growth (57% in RS4;11 and by 70% in REH) compared to control vector. CTGF knockdown moderately reduced adhesion of RS4;11 to fibronectin (27%±0.1%). In the in vitro culture system, CTGF knockdown significantly enhanced growth inhibition and apoptosis induction after 48 hour exposure to chemotherapy agents (annexinV(+): Vincristine 25.8±3.5%, Vincristine/CTGF-kd 42.6±2.8%; Dexamethasone 66.3±1.8%, Dexamethasone/CTGF-kd 99.3±0.6%; Methotrexate, 17.4±0.6%, Methotrexate/CTGF-kd 39.5±3.9). Analysis of signaling pathways showed that CTGF down-regulation inhibits Src phosphorylation at Tyr416. Remarkably, phosphorylation of AKT at Ser473, and of mTOR downstream targets S6 Ribosomal Protein and 4E-BP1 were significantly inhibited in CTGF-knockdown RS4;11 cells, concomitantly with upregulation of expression of AKT targets Bim and p27. No changes in the levels of apoptotic regulators cIAP1 and Bcl-xL were found. This data suggest that CTGF regulates growth and chemosensitivity of ALL cells through Src and AKT/mTOR signaling. We previously reported that an anti-CTGF monoclonal antibody significantly extended median survival of mice implanted with xenografts derived from a primary CTGF expressing ALL sample in NOD/SCID mice. We are now investigating the effects of combining anti-CTGF treatment with cytotoxic chemotherapy in this model. Blocking CTGF signaling may represent a useful adjunct to cytotoxic therapies in acute lymphoblastic leukemia. Disclosures: Spong: Fibrogen: Employment, Equity Ownership.


2018 ◽  
Vol 6 (3) ◽  
pp. 18 ◽  
Author(s):  
Joseph Tarr ◽  
Alex Lambi ◽  
James Bradley ◽  
Mary Barbe ◽  
Steven Popoff

Development of the palate is the result of an organized series of events that require exquisite spatial and temporal regulation at the cellular level. There are a myriad of growth factors, receptors and signaling pathways that have been shown to play an important role in growth, elevation and/or fusion of the palatal shelves. Altered expression or activation of a number of these factors, receptors and signaling pathways have been shown to cause cleft palate in humans or mice with varying degrees of penetrance. This review will focus on connective tissue growth factor (CTGF) or CCN2, which was recently shown to play an essential role in formation of the secondary palate. Specifically, the absence of CCN2 in KO mice results in defective cellular processes that contribute to failure of palatal shelf growth, elevation and/or fusion. CCN2 is unique in that it has been shown to interact with a number of other factors important for palate development, including bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), epidermal growth factor (EGF), Wnt proteins and transforming growth factor-βs (TGF-βs), thereby influencing their ability to bind to their receptors and mediate intracellular signaling. The role that these factors play in palate development and their specific interactions with CCN2 will also be reviewed. Future studies to elucidate the precise mechanisms of action for CCN2 and its interactions with other regulatory proteins during palatogenesis are expected to provide novel information with the potential for development of new pharmacologic or genetic treatment strategies for clinical intervention of cleft palate during development.


Sign in / Sign up

Export Citation Format

Share Document