scholarly journals Explicit parallel co-simulation approach: analysis and improved coupling method based on H-infinity synthesis

Author(s):  
Weitao Chen ◽  
Shenhai Ran ◽  
Canhui Wu ◽  
Bengt Jacobson

AbstractCo-simulation is widely used in the industry for the simulation of multidomain systems. Because the coupling variables cannot be communicated continuously, the co-simulation results can be unstable and inaccurate, especially when an explicit parallel approach is applied. To address this issue, new coupling methods to improve the stability and accuracy have been developed in recent years. However, the assessment of their performance is sometimes not straightforward or is even impossible owing to the case-dependent effect. The selection of the coupling method and its tuning cannot be performed before running the co-simulation, especially with a time-varying system.In this work, the co-simulation system is analyzed in the frequency domain as a sampled-data interconnection. Then a new coupling method based on the H-infinity synthesis is developed. The method intends to reconstruct the coupling variable by adding a compensator and smoother at the interface and to minimize the error from the sample-hold process. A convergence analysis in the frequency domain shows that the coupling error can be reduced in a wide frequency range, which implies good robustness. The new method is verified using two co-simulation cases. The first case is a dual mass–spring–damper system with random parameters and the second case is a co-simulation of a multibody dynamic (MBD) vehicle model and an electric power-assisted steering (EPAS) system model. Experimental results show that the method can improve the stability and accuracy, which enables a larger communication step to speed up the explicit parallel co-simulation.

Author(s):  
A.C.C. Coolen ◽  
A. Annibale ◽  
E.S. Roberts

This chapter reviews graph generation techniques in the context of applications. The first case study is power grids, where proposed strategies to prevent blackouts have been tested on tailored random graphs. The second case study is in social networks. Applications of random graphs to social networks are extremely wide ranging – the particular aspect looked at here is modelling the spread of disease on a social network – and how a particular construction based on projecting from a bipartite graph successfully captures some of the clustering observed in real social networks. The third case study is on null models of food webs, discussing the specific constraints relevant to this application, and the topological features which may contribute to the stability of an ecosystem. The final case study is taken from molecular biology, discussing the importance of unbiased graph sampling when considering if motifs are over-represented in a protein–protein interaction network.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


2021 ◽  
Vol 11 (5) ◽  
pp. 2098
Author(s):  
Heyi Wei ◽  
Wenhua Jiang ◽  
Xuejun Liu ◽  
Bo Huang

Knowledge of the sunshine requirements of landscape plants is important information for the adaptive selection and configuration of plants for urban greening, and is also a basic attribute of plant databases. In the existing studies, the light compensation point (LCP) and light saturation point (LSP) have been commonly used to indicate the shade tolerance for a specific plant; however, these values are difficult to adopt in practice because the landscape architect does not always know what range of solar radiation is the best for maintaining plant health, i.e., normal growth and reproduction. In this paper, to bridge the gap, we present a novel digital framework to predict the sunshine requirements of landscape plants. First, the research introduces the proposed framework, which is composed of a black-box model, solar radiation simulation, and a health standard system for plants. Then, the data fitting between solar radiation and plant growth response is used to obtain the value of solar radiation at different health levels. Finally, we adopt the LI-6400XT Portable Photosynthetic System (Li-Cor Inc., Lincoln, NE, USA) to verify the stability and accuracy of the digital framework through 15 landscape plant species of a residential area in the city of Wuhan, China, and also compared and analyzed the results of other researchers on the same plant species. The results show that the digital framework can robustly obtain the values of the healthy, sub-healthy, and unhealthy levels for the 15 landscape plant species. The purpose of this study is to provide an efficient forecasting tool for large-scale surveys of plant sunshine requirements. The proposed framework will be beneficial for the adaptive selection and configuration of urban plants and will facilitate the construction of landscape plant databases in future studies.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 333
Author(s):  
Jian Le ◽  
Hao Zhang ◽  
Cao Wang ◽  
Xingrui Li ◽  
Jiangfeng Zhu

To enhance the stability and accuracy of the digital-physical hybrid simulation system of a modular multilevel converter-based high voltage direct current (MMC-HVDC) system, this paper presents an improved power interface modeling algorithm based on ideal transformer method (ITM). By analyzing the stability condition of a hybrid simulation system based on the ITM model, the current of a so-called virtual resistance is added to the control signal of the controlled current source in the digital subsystem, and the stability of the hybrid simulation system with the improved power interface model is analyzed. The value of the virtual resistance is optimized by comprehensively considering system stability and simulation precision. A two-terminal bipolar MMC-HVDC simulation system based on the proposed power interface model is established. The comparisons of the simulation results verify that the proposed method can effectively improve the stability of the hybrid simulation system, and at the same time has the advantages of high simulation accuracy and easy implementation.


1996 ◽  
Vol 28 (02) ◽  
pp. 540-566 ◽  
Author(s):  
Peter G. Harrison ◽  
Edwige Pitel

We derive expressions for the generating function of the equilibrium queue length probability distribution in a single server queue with general service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. For the case of first come first served queueing discipline for the positive customers, we compare the killing strategies in which either the last customer in the queue or the one in service is removed by a negative customer. We then consider preemptive-restart with resampling last come first served queueing discipline for the positive customers, combined with the elimination of the customer in service by a negative customer—the case of elimination of the last customer yields an analysis similar to first come first served discipline for positive customers. The results show different generating functions in contrast to the case where service times are exponentially distributed. This is also reflected in the stability conditions. Incidently, this leads to a full study of the preemptive-restart with resampling last come first served case without negative customers. Finally, approaches to solving the Fredholm integral equation of the first kind which arises, for instance, in the first case are considered as well as an alternative iterative solution method.


2017 ◽  
Vol 21 (3) ◽  
pp. 782-807 ◽  
Author(s):  
Yanli Wang ◽  
Shudao Zhang

AbstractWe present a numerical method to solve the Vlasov-Poisson-Fokker-Planck (VPFP) system using the NRxx method proposed in [4, 7, 9]. A globally hyperbolic moment system similar to that in [23] is derived. In this system, the Fokker-Planck (FP) operator term is reduced into the linear combination of the moment coefficients, which can be solved analytically under proper truncation. The non-splitting method, which can keep mass conservation and the balance law of the total momentum, is used to solve the whole system. A numerical problem for the VPFP system with an analytic solution is presented to indicate the spectral convergence with the moment number and the linear convergence with the grid size. Two more numerical experiments are tested to demonstrate the stability and accuracy of the NRxx method when applied to the VPFP system.


Author(s):  
Minghui Zheng ◽  
Masayoshi Tomizuka

Vibration with multiple large peaks at high frequencies may cause significant performance degradation and have become a major concern in modern high precision control systems. To deal with such high-frequency peaks, it is proposed to design a frequency-shaped sliding mode controller based on H∞ synthesis. It obtains an ‘optimal’ filter to shape the sliding surface, and thus provides frequency-dependent control allocation. The proposed frequency-shaping method assures the stability in the presence of multiple-peak vibration sources, and minimizes the weighted H∞ norm of the sliding surface dynamics. The evaluation is performed on a simulated hard disk drive with actual vibration sources from experiments, and the effectiveness of large vibration peak suppression is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document