scholarly journals Retraction Note: Investigation and improvement of layered lithium-ion nano-batteries by iron effect on storage energy efficiency

2021 ◽  
Vol 23 (8) ◽  
Author(s):  
Mohammed J. Haider ◽  
Aseel Abdulkreem Hadi ◽  
Jehan Admon Saimon ◽  
Adawiya J. Haider
2020 ◽  
Vol 22 (7) ◽  
Author(s):  
Mohammed J. Haider ◽  
Aseel Abdulkreem Hadi ◽  
Jehan Admon Saimon ◽  
Adawiya J. Haider

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2543 ◽  
Author(s):  
Zeyu Chen ◽  
Jiahuan Lu ◽  
Bo Liu ◽  
Nan Zhou ◽  
Shijie Li

The performance of lithium-ion batteries will inevitably degrade during the high frequently charging/discharging load applied in electric vehicles. For hybrid electric vehicles, battery aging not only declines the performance and reliability of the battery itself, but it also affects the whole energy efficiency of the vehicle since the engine has to participate more. Therefore, the energy management strategy is required to be adjusted during the entire lifespan of lithium-ion batteries to maintain the optimality of energy economy. In this study, tests of the battery performances under thirteen different aging stages are involved and a parameters-varying battery model that represents the battery degradation is established. The influences of battery aging on energy consumption of a given plug-in hybrid electric vehicle (PHEV) are analyzed quantitatively. The results indicate that the variations of capacity and internal resistance are the main factors while the polarization and open circuit voltage (OCV) have a minor effect on the energy consumption. Based on the above efforts, the optimal energy management strategy is proposed for optimizing the energy efficiency concerning both the fresh and aging batteries in PHEV. The presented strategy is evaluated by a simulation study with different driving cycles, illustrating that it can balance out some of the harmful effects that battery aging can have on energy efficiency. The energy consumption is reduced by up to 2.24% compared with that under the optimal strategy without considering the battery aging.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2550 ◽  
Author(s):  
Mahesh Patil ◽  
Satyam Panchal ◽  
Namwon Kim ◽  
Moo-Yeon Lee

Temperature control of the lithium-ion pouch cells is crucial for smooth operation, longevity and enhanced safety in the battery-operated electric vehicles. Investigating the thermal behavior of lithium-ion pouch cells and optimizing the cooling performance are required to accomplish better performance, long life, and enhanced safety. In the present study, the cooling performance characteristics of 20 Ah lithium-ion pouch cell with cold plates along both surfaces are investigated by varying the inlet coolant mass flow rates and the inlet coolant temperatures. The inlet coolant mass flow rate is varied from 0.000833 kg/s to 0.003333 kg/s, and the inlet coolant temperature is varied from 5 °C to 35 °C. In addition, the effects of the cold plate geometry parameter on cooling performance of 20 Ah lithium-ion pouch cell are studied by varying the number of the channels from 4 to 10. The maximum temperature and difference between the maximum and the minimum temperatures are considered as important criteria for cooling performance evaluation of the 20 Ah lithium-ion pouch cell with cold plates along both surfaces. The cooling energy efficiency parameter (β) and the pressure drop for 20 Ah lithium-ion pouch cell with cold plates along both surfaces are also reported. The study shows that enhanced cooling energy efficiency is accompanied with low inlet coolant temperature, low inlet coolant mass flow rate, and a high number of the cooling channels. As a result, the temperature distribution, the pressure drop, and the cooling energy efficiency parameter (β) of the 20 Ah lithium-ion pouch cell with cold plates along both surfaces are provided, and could be applied for optimizing the cooling performances of the thermal management system for lithium-ion batteries in electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document