Gas Adsorption Characterization of Pore Structure of Organic-rich Shale: Insights into Contribution of Organic Matter to Shale Pore Network

Author(s):  
Yang Wang ◽  
Luofu Liu ◽  
Hongfei Cheng
2017 ◽  
Vol 54 (10) ◽  
pp. 1033-1048 ◽  
Author(s):  
Yuguang Hou ◽  
Sheng He ◽  
Nicholas B. Harris ◽  
Jizheng Yi ◽  
Yi Wang ◽  
...  

The Ordovician Wufeng Formation and Silurian Longmaxi Formation are two of the most organic-rich and gas-prospective shale formations in the central Yangtze area, China. In this study, we investigate the controls exerted by shale composition and pore structure on methane sorption of these highly matured marine shales (Ro ranges from 2.0% to 4.0%). Samples were analyzed by SEM pore imaging of Ar-ion milled samples, high pressure methane adsorption, and low temperature nitrogen adsorption. In the high TOC Wufeng and lower Longmaxi formations, numerous organic matter pores are present. A positive correlation exists between TOC, BET surface area, and CH4 sorption capacity, indicating that porosity associated with organic matter is the key factor controlling methane sorption capacity of shale samples. In the organic-lean upper Longmaxi Formation, pores within clay particles and carbonate minerals are the major pore types. Organic-lean shale samples from the upper Longmaxi Formation have higher clay content, lower BET surface area, and lower adsorption capacity than organic-rich shales. Within several low TOC samples, a relatively strong correlation exists between illite content and methane sorption capacity, which is interpreted to result from clay mineral-hosted porosity.


2016 ◽  
Vol 4 (2) ◽  
pp. SF165-SF177 ◽  
Author(s):  
Emmanuel Oyewole ◽  
Mehrnoosh Saneifar ◽  
Zoya Heidari

Carbonate formations consist of a wide range of pore types with different shapes, pore-throat sizes, and varying levels of pore-network connectivity. Such heterogeneous pore-network properties affect the fluid flow in the formation. However, characterizing pore-network properties (e.g., effective porosity and permeability) in carbonate formations is challenging due to the heterogeneity at different scales and complex pore structure of carbonate rocks. We have developed an integrated technique for multiscale characterization of carbonate pore structure based on mercury injection capillary pressure (MICP) measurements, X-ray micro-computed tomography (micro-CT) 3D rock images, and well logs. We have determined pore types based on the pore-throat radius distributions obtained from MICP measurements. We developed a new method for improved assessment of effective porosity and permeability in the well-log domain using pore-scale numerical simulations of fluid flow and electric current flow in 3D micro-CT core images obtained in each pore type. Finally, we conducted petrophysical rock classification based on the depth-by-depth estimates of effective porosity, permeability, volumetric concentrations of minerals, and pore types using an unsupervised artificial neural network. We have successfully applied the proposed technique to three wells in the Scurry Area Canyon Reef Operators Committee (SACROC ) Unit. Our results find that electrical resistivity measurements can be used for reliable characterization of pore structure and assessment of effective porosity and permeability in carbonate formations. The estimates of permeability in the well-log domain were cross-validated using the available core measurements. We have observed a 34% improvement in relative errors in well-log-based estimates of permeability, as compared with the core-based porosity-permeability models.


Fuel ◽  
2015 ◽  
Vol 158 ◽  
pp. 908-917 ◽  
Author(s):  
Baisheng Nie ◽  
Xianfeng Liu ◽  
Longlong Yang ◽  
Junqing Meng ◽  
Xiangchun Li

Fuel ◽  
2018 ◽  
Vol 219 ◽  
pp. 296-311 ◽  
Author(s):  
Kouqi Liu ◽  
Mehdi Ostadhassan ◽  
Jie Zou ◽  
Thomas Gentzis ◽  
Reza Rezaee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document