Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy

Fuel ◽  
2015 ◽  
Vol 158 ◽  
pp. 908-917 ◽  
Author(s):  
Baisheng Nie ◽  
Xianfeng Liu ◽  
Longlong Yang ◽  
Junqing Meng ◽  
Xiangchun Li
2020 ◽  
Author(s):  
Junliang Zhao ◽  
Wei Zhang ◽  
Dongxiao Zhang

<p>Scanning electron microscopy (SEM) and helium ion microscopy (HIM) are two of the fundamental tools in the study of the microstructures of shale. A comprehensive comparison of these two techniques in the application of organic pore structure characterization is presented in this work. Owing to the small wavelength of the helium ion, the spot size of the ion beam is not restricted by diffraction aberration, and the convergence angle of helium ion beam can be much smaller than of the electron beam. The microscopic images and reconstruction models indicate that HIM has higher spatial resolution and increased depth of field than SEM. The pores below 10 nm and inner structures of pore networks can be observed via HIM images. The advantages shown in the focused ion beam/helium ion microscopy (FIB/HIM) results are similar to the 2-D HIM images. Smaller pores whose size is beyond the resolution of focused ion beam/scanning electron microscopy (FIB/SEM) can be found, which suggests the connection possibility of the big pores. However, to get reliable pictures, the ion-induced damage on organic matters should be avoided. To lower the beam current and to shorten the dwell time are two effective ways to reduce the beam damage.</p>


2020 ◽  
Vol 8 (1) ◽  
pp. T103-T114
Author(s):  
Tingwei Li ◽  
Zhenxue Jiang ◽  
Pibo Su ◽  
Xi Zhang ◽  
Weitao Chen ◽  
...  

Similar to mineral composition and organic geochemical features, laminae development significantly influences pore structure. Taking the lower third member of the Shahejie Shale (Es3l), Zhanhua Sag, Eastern China as the research object, we introduced various methods to analyze the influence of laminae development on pore structure, including thin section observations, field emission scanning electron microscopy, gas adsorption, high-pressure mercury injection, nano-computed tomography (CT), quantitative evaluation of minerals by scanning electron microscopy, and spontaneous imbibition. We draw the conclusions that various minerals present a mixed distribution in nonlaminated shale, whereas laminated shale is characterized by alternating bright and dark laminae. Dark laminae comprise clay and quartz, whereas bright laminae consist of calcite. Microfractures are abundant at the edges of the bright and dark laminae. Nonlaminated shale possesses a pore volume (PV) of [Formula: see text] and a specific surface area (SSA) of [Formula: see text]. In contrast, laminated shale has a PV of [Formula: see text] and an SSA of [Formula: see text] with good reservoir property. Pores, especially macropores and micropores, are much more developed in laminated shale than in nonlaminated shale. Interconnected pores in sheet form are extremely developed in laminated shale, whereas most of the interconnected pores in nonlaminated shale are distributed in isolated spherical and tubular forms. Because of the abundant interconnected pores and throats, laminated shale presents good connectivity. The slopes of the spontaneous imbibition curves in the first and second stages for laminated shale are greater than those for nonlaminated shale. Laminae development could provide microfractures as dominant pathways for fluid migration as well as promote the interconnection of pores, greatly increasing the connectivity of shale reservoirs.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


Sign in / Sign up

Export Citation Format

Share Document