The Relationship between Prefrontal Cortex Neuron Activity in the Two Hemispheres on Performance of a Choice Task in a Two-Ring Maze

2017 ◽  
Vol 48 (1) ◽  
pp. 11-15
Author(s):  
E. V. Filatova ◽  
A. A. Orlov ◽  
S. V. Afanas’ev
Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Kristin M. Barry ◽  
Donald Robertson ◽  
Wilhelmina H. A. M. Mulders

In the adult auditory system, loss of input resulting from peripheral deafferentation is well known to lead to plasticity in the central nervous system, manifested as reorganization of cortical maps and altered activity throughout the central auditory pathways. The auditory system also has strong afferent and efferent connections with cortico-limbic circuitry including the prefrontal cortex and the question arises whether this circuitry is also affected by loss of peripheral input. Recent studies in our laboratory showed that PFC activation can modulate activity of the auditory thalamus or medial geniculate nucleus (MGN) in normal hearing rats. In addition, we have shown in rats that cochlear trauma resulted in altered spontaneous burst firing in MGN. However, whether the PFC influence on MGN is changed after cochlear trauma is unknown. We investigated the effects of electrical stimulation of PFC on single neuron activity in the MGN in anaesthetized Wistar rats 2 weeks after acoustic trauma or sham surgery. Electrical stimulation of PFC showed a variety of effects in MGN neurons both in sham and acoustic trauma groups but inhibitory responses were significantly larger in the acoustic trauma animals. These results suggest an alteration in functional connectivity between PFC and MGN after cochlear trauma. This change may be a compensatory mechanism increasing sensory gating after the development of altered spontaneous activity in MGN, to prevent altered activity reaching the cortex and conscious perception.


Author(s):  
Satoshi Tsujimoto ◽  
Mariko Kuwajima ◽  
Toshiyuki Sawaguchi

Abstract. The lateral prefrontal cortex (LPFC) plays a major role in both working memory (WM) and response inhibition (RI), which are fundamental for various cognitive abilities. We explored the relationship between these LPFC functions during childhood development by examining the performance of two groups of children in visuospatial and auditory WM tasks and a go/no-go RI task. In the younger children (59 5- and 6-year-olds), performance on the visuospatial WM task correlated significantly with that in the auditory WM task. Furthermore, accuracy in these tasks correlated significantly with performance on the RI task, particularly in the no-go trials. In contrast, there were no significant correlations among those tasks in older children (92 8- and 9-year-olds). These results suggest that functional neural systems for visuospatial WM, auditory WM, and RI, especially those in the LPFC, become fractionated during childhood, thereby enabling more efficient processing of these critical cognitive functions.


2014 ◽  
Vol 369 (1655) ◽  
pp. 20130473 ◽  
Author(s):  
Tobias Larsen ◽  
John P. O'Doherty

While there is a growing body of functional magnetic resonance imaging (fMRI) evidence implicating a corpus of brain regions in value-based decision-making in humans, the limited temporal resolution of fMRI cannot address the relative temporal precedence of different brain regions in decision-making. To address this question, we adopted a computational model-based approach to electroencephalography (EEG) data acquired during a simple binary choice task. fMRI data were also acquired from the same participants for source localization. Post-decision value signals emerged 200 ms post-stimulus in a predominantly posterior source in the vicinity of the intraparietal sulcus and posterior temporal lobe cortex, alongside a weaker anterior locus. The signal then shifted to a predominantly anterior locus 850 ms following the trial onset, localized to the ventromedial prefrontal cortex and lateral prefrontal cortex. Comparison signals between unchosen and chosen options emerged late in the trial at 1050 ms in dorsomedial prefrontal cortex, suggesting that such comparison signals may not be directly associated with the decision itself but rather may play a role in post-decision action selection. Taken together, these results provide us new insights into the temporal dynamics of decision-making in the brain, suggesting that for a simple binary choice task, decisions may be encoded predominantly in posterior areas such as intraparietal sulcus, before shifting anteriorly.


2020 ◽  
Author(s):  
Sebastian Bobadilla-Suarez ◽  
Olivia Guest ◽  
Bradley C. Love

AbstractRecent work has considered the relationship between value and confidence in both behavior and neural representation. Here we evaluated whether the brain organizes value and confidence signals in a systematic fashion that reflects the overall desirability of options. If so, regions that respond to either increases or decreases in both value and confidence should be widespread. We strongly confirmed these predictions through a model-based fMRI analysis of a mixed gambles task that assessed subjective value (SV) and inverse decision entropy (iDE), which is related to confidence. Purported value areas more strongly signalled iDE than SV, underscoring how intertwined value and confidence are. A gradient tied to the desirability of actions transitioned from positive SV and iDE in ventromedial prefrontal cortex to negative SV and iDE in dorsal medial prefrontal cortex. This alignment of SV and iDE signals could support retrospective evaluation to guide learning and subsequent decisions.


2010 ◽  
Vol 68 ◽  
pp. e440
Author(s):  
Emi Takakuda ◽  
Kensuke Arai ◽  
Yoshikazu Isomura ◽  
Takashi Takekawa ◽  
Tomoki Fukai

2020 ◽  
pp. 136700692095288
Author(s):  
Sha Xie ◽  
Dandan Wu ◽  
Jinfeng Yang ◽  
Jiutong Luo ◽  
Chunqi Chang ◽  
...  

Aims: The present study aims to examine: (1) the relationship between young children’s bilingualism and their performance in the Dimensional Card Change Sort (DCCS) task; and (2) whether prefrontal activation was associated with children’s bilingualism and executive function. Methodology: Children performed three sessions of the DCCS and their brain activity during the task was measured using functional nearinfrared spectroscopy (fNIRS). Data and analysis: A sample of bilingual children ( N = 49) was recruited from a preschool with an English immersion program. We examined whether children’s performance in the DCCS was related to their bilingualism and whether the changes in oxygenated hemoglobin in the prefrontal regions were related to their bilingualism and performance in the DCCS. Findings/conclusions: Results showed that children’s English ability was significantly correlated with their behavioral performance in DCCS, and predicted children’s group membership (pass or perseverate). Furthermore, children in the pass group significantly activated the prefrontal cortex than those in the perseverate group, and activation in the prefrontal region was significantly correlated with children’s English ability. Originality: The current study first examined the effect of children’s bilingualism on their executive function and prefrontal activation.


2018 ◽  
Vol 2 ◽  
pp. 239821281877386 ◽  
Author(s):  
Miranda J. Francoeur ◽  
Robert G. Mair

Background: To respond adaptively in a dynamic environment, it is important for organisms to utilise information about recent events to decide between response options. Methods: To examine the role of medial prefrontal cortex in adaptive decision-making, we recorded single neuron activity in rats performing a dynamic delayed non-matching to position task. Results: We recorded activity from 1335 isolated neurons, 458 (34%) with criterion event-related activity, of which 431 (94%) exhibited 1 of 10 distinct excitatory response types: five at different times relative to delivery (or lack) of reinforcement following sample and choice responses and five correlated with movements or lever press actions that occurred multiple times in each trial. Normalised population averages revealed a precisely timed cascade of population responses representing the temporal organisation behavioural events that constitute delayed non-matching to position trials. Firing field analyses identified a subset of neurons with restricted spatial fields: responding to the conjunction of a behavioural event with a specific location. Anatomical analyses showed considerable overlap in the distribution of different response types in medial prefrontal cortex with a significant trend for dorsal areas to contain more neurons with action-related activity and ventral areas more responses related to action outcomes. Conclusion: These results indicate that medial prefrontal cortex contains discrete populations of neurons that represent the temporal organisation of actions and outcomes during delayed non-matching to position trials. They support the hypothesis that medial prefrontal cortex promotes flexible control of complex behaviours by action–outcome contingencies.


Sign in / Sign up

Export Citation Format

Share Document