Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach

2022 ◽  
Author(s):  
Emre Topçu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changhong Liu ◽  
Cuiping Yang ◽  
Qi Yang ◽  
Jiao Wang

AbstractDrought refers to a meteorological disaster that causes insufficient soil moisture and damage to crop water balance due to long-term lack of precipitation. With the increasing shortage of water resources, drought has become one of the hot issues of global concern. The standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) can effectively reflect the changes in drought characteristics of different geomorphologies in Sichuan on time and space scales, to explore the difference in drought characteristics between different physiognomy types in Sichuan Province, We calculated the SPI and SPEI values based on the data of 44 meteorological stations in Sichuan Province from 1961 to 2019 and used Mann–Kendall trend test and multivariable linear regression method (MLR) to quantify the significance of the drought characteristic trends at different time and space scales. The results as follow: (1) The SPEI drought trend in plain and hilly regions was greater than that in plateau and mountain regions on all time scales (− 0.039 year−1 for 1-month in hilly, − 0.035 year−1 for 1-month in plain, − 0.14 year−1 for 1-month in plateau, − 0.026 year−1 for 1-month in mountain) and the magnitude of trend of eastern (− 4.4 to 0.1 year−1) was lager than western (− 2.1 to 2.7 year−1), means that the drought trends transfer from northwest to east. (2) The drought intensity in the western region gradually increased (0.54–1.05) and drought events mainly occurred in the southwest plateau and central mountainous regions (24–47 times), means that drought meteorological hotspots were mainly concentrated in the Sichuan basin. (3) The MLR indicated altitude (H) is not the main influencing factor that causes the spatial unevenness of precipitation in Sichuan Province, but altitude (H), temperature (T), longitude (Lo) and latitude (La) can co-determined the precipitation. The results of this study are instructive and practical for drought assessment, risk management and application decision-making in Sichuan Province, and have guiding significance for agricultural disaster prevention, mitigation and agricultural irrigation in Sichuan Province.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1268
Author(s):  
Bathsheba Musonda ◽  
Yuanshu Jing ◽  
Vedaste Iyakaremye ◽  
Moses Ojara

This study examines long-term spatial and temporal trends of drought characteristics based on the Standardized Precipitation Index at three different time scales (3, 6, and 12 months) over Zambia from 1981 to 2017. Drought characteristic conditions such as duration, severity, and intensity at monthly, seasonal, and annual levels were analyzed to investigate the drought patterns over Zambia. The results show a significant increase in drought events over the southwestern regions and a decrease over the northeastern regions. It is in this regard that two stations from different locations (southwest and northeast) were analyzed. The results show increasing trends of drought over Sesheke (southwest) and decreasing trends over Kasama (northeast). More drought impacts are felt over southern compared to northern areas, which poses a serious concern to both agriculture and hydrological industries over the drought-prone areas of Southern Zambia. However, the analysis further shows that droughts were more intense, persistent, and severe over the southwest, while moderate droughts were found in some few areas of Northeast Zambia. The Mann–Kendall test trend and slope indicated that both annual and seasonal drought have increased. However, drought increment at an annual level shows a low magnitude as compared to the seasonal level. This suggested the importance of evaluating drought at an interannual and seasonal time scale over Zambia. Specifically, the drought increased determinedly before 2010 and became erratic between 2010 and 2017 with considerable regional variation. Zambia experienced moderate to severe droughts during 1991–1992, 1994–1995, 2006–2005, and 2015–2016, which resulted in serious damages to the environment and society. According to the findings of this study, it is suggested that the implications of drought can be managed by creating strategies and adaptation measures.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document