Modeling the Spatio-Temporal Meteorological Drought Characteristics Using the Standardized Precipitation Index (SPI) in Raya and Its Environs, Northern Ethiopia

2018 ◽  
Vol 2 (2) ◽  
pp. 281-292 ◽  
Author(s):  
Eskinder Gidey ◽  
Oagile Dikinya ◽  
Reuben Sebego ◽  
Eagilwe Segosebe ◽  
Amanuel Zenebe
2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2014 ◽  
Vol 12 (3) ◽  
pp. 253-264 ◽  
Author(s):  
Mladen Milanovic ◽  
Milan Gocic ◽  
Slavisa Trajkovic

Drought represents a combined heat-precipitation extreme and has become an increasingly frequent phenomenon in recent years. In order to access the entire analysis of drought, it is necessary to include the analysis of several types of drought. In this paper, impacts of meteorological and agricultural drought were analyzed across the Standardized Precipitation Index (SPI) and Agricultural Rainfall Index (ARI) on the territory of Serbia for the period from 1980 to 2010. For both types of drought, year 2000 is notable as the year when most of the observed stations had the highest drought intensity. It was found that meteorological drought for year 2000 has a higher intensity in the central and southeastern parts of the country, as well as in the north. Of all the stations, the highest intensity of meteorological drought was observed at Loznica station in 1989. Agricultural drought in 2000 had the lowest intensity in western Serbia.


2020 ◽  
pp. 1-58
Author(s):  
Chuanhao Wu ◽  
Pat J.-F. Yeh ◽  
Jiali Ju ◽  
Yi-Ying Chen ◽  
Kai Xu ◽  
...  

AbstractDrought projections are accompanied with large uncertainties due to varying estimates of future warming scenarios from different modelling and forcing data. Using the Standardized Precipitation Index (SPI), this study presents a global assessment of uncertainties in drought characteristics (severity S and frequency Df) projections based on the simulations of 28 general circulation models (GCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). A hierarchical framework incorporating a variance–based global sensitivity analysis was developed to quantify the uncertainties in drought characteristics projections at various spatial (global and regional) and temporal (decadal and 30-yr) scales due to 28 GCMs, 3 Representative Concentration Pathway scenarios (RCP2.6, RCP4.5, RCP8.5), and 2 bias-correction (BC) methods. The results indicated that the largest uncertainty contribution in the globally projected S and Df is from the GCM (>60%), followed by BC (<35%) and RCP (<16%). Spatially, BC reduces the spreads among GCMs particularly in Northern Hemisphere (NH), leading to smaller GCM uncertainty in NH than Southern Hemisphere (SH). In contrast, the BC and RCP uncertainties are larger in NH than SH, and the BC uncertainty can be larger than GCM uncertainty for some regions (e.g., southwest Asia). At the decadal and 30-yr timescales, the contributions for 3 uncertainty sources show larger variability in S than Df projections, especially in SH. The GCM and BC uncertainties show overall decreasing trends with time, while the RCP uncertainty is expected to increase over time and even can be larger than BC uncertainty for some regions (e.g., northern Asia) by the end of this century.


Sign in / Sign up

Export Citation Format

Share Document