scholarly journals Event-triggering $${H}_{\infty }$$-based observer combined with NN for simultaneous estimation of vehicle sideslip and roll angles with network-induced delays

2021 ◽  
Vol 103 (3) ◽  
pp. 2733-2752
Author(s):  
Maria Jesus L. Boada ◽  
Beatriz L. Boada ◽  
Hui Zhang

AbstractNowadays, vehicles are being fitted with systems that improve their maneuverability, stability, and comfort in order to reduce the number of accidents. Improving these aspects is of particular interest thanks to the incorporation of autonomous vehicles onto the roads. The knowledge of vehicle sideslip and roll angles, which are among the main causes of road accidents, is necessary for a proper design of a lateral stability and roll-over controller system. The problem is that these two variables cannot be measured directly through sensors installed in current series production vehicles due to their high costs. For this reason, their estimation is fundamental. In addition, there is a time delay in the relaying of information between the different vehicle systems, such as, sensors, actuators and controllers, among others. This paper presents the design of an $${H}_{\infty }$$ H ∞ -based observer that simultaneously estimates both the sideslip angle and the roll angle of a vehicle for a networked control system, with networked transmission delay based on an event-triggered communication scheme combined with neural networks (NN). To deal with the vehicle nonlinearities, NN and linear-parameter-varying techniques are considered alongside uncertainties in parameters. Both simulation and experimental results are carried out to prove the performance of observer design.

2016 ◽  
Vol 63 (7) ◽  
pp. 4357-4366 ◽  
Author(s):  
Bangji Zhang ◽  
Haiping Du ◽  
James Lam ◽  
Nong Zhang ◽  
Weihua Li

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3679
Author(s):  
Lisardo Prieto González ◽  
Susana Sanz Sánchez ◽  
Javier Garcia-Guzman ◽  
María Jesús L. Boada ◽  
Beatriz L. Boada

Presently, autonomous vehicles are on the rise and are expected to be on the roads in the coming years. In this sense, it becomes necessary to have adequate knowledge about its states to design controllers capable of providing adequate performance in all driving scenarios. Sideslip and roll angles are critical parameters in vehicular lateral stability. The later has a high impact on vehicles with an elevated center of gravity, such as trucks, buses, and industrial vehicles, among others, as they are prone to rollover. Due to the high cost of the current sensors used to measure these angles directly, much of the research is focused on estimating them. One of the drawbacks is that vehicles are strong non-linear systems that require specific methods able to tackle this feature. The evolution in Artificial Intelligence models, such as the complex Artificial Neural Network architectures that compose the Deep Learning paradigm, has shown to provide excellent performance for complex and non-linear control problems. In this paper, the authors propose an inexpensive but powerful model based on Deep Learning to estimate the roll and sideslip angles simultaneously in mass production vehicles. The model uses input signals which can be obtained directly from onboard vehicle sensors such as the longitudinal and lateral accelerations, steering angle and roll and yaw rates. The model was trained using hundreds of thousands of data provided by Trucksim® and validated using data captured from real driving maneuvers using a calibrated ground truth device such as VBOX3i dual-antenna GPS from Racelogic®. The use of both Trucksim® software and the VBOX measuring equipment is recognized and widely used in the automotive sector, providing robust data for the research shown in this article.


2014 ◽  
Vol 248 ◽  
pp. 1218-1233 ◽  
Author(s):  
Periasamy Vijay ◽  
Moses O. Tadé ◽  
Khaliq Ahmed ◽  
Ranjeet Utikar ◽  
Vishnu Pareek

2020 ◽  
Author(s):  
Elias Dias Rossi Lopes ◽  
Gustavo Simão Rodrigues ◽  
Helon Vicente Hultmann Ayala

Friction efforts are present in almost all mechanical applications, due to contact between bodies and there are many important situations, in which they must be properly controlled. Among these, there are tire contact forces, which is focus of many studies in autonomous vehicles and control applications on vehicle systems, since the tire forces and moments are nonlinear and may be modelled as friction efforts. Any control synthesis focused to optimize its performance must be associated to state estimators, since the efforts depend on slip variables, as longitudinal slip and sideslip angle, and it is not possible to accurately measure them. So, in this paper, two state estimation algorithms are evaluated: Extended Kalman Filter (EKF) and Moving Horizon State Estimation (MHSE), which are applied to a quarter-car model for longitudinal dynamics. It is presented that, for both traction and braking phases, the MHSE is more accurate, since it takes explicitly into account the nonlinear model in the estimation process, independently of Jacobian sensitivities to discontinuities as is the case here. So, it is demonstrated that the developed estimator may be successfully associated to controllers with the objective of optimize tire performance in traction and braking control.


Sign in / Sign up

Export Citation Format

Share Document