scholarly journals Optimal homotopy analysis and control of error for implicitly defined fully nonlinear differential equations

2018 ◽  
Vol 81 (1) ◽  
pp. 181-196 ◽  
Author(s):  
Robert A. Van Gorder
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shaheed N. Huseen ◽  
Said R. Grace

A modifiedq-homotopy analysis method (mq-HAM) was proposed for solvingnth-order nonlinear differential equations. This method improves the convergence of the series solution in thenHAM which was proposed in (see Hassan and El-Tawil 2011, 2012). The proposed method provides an approximate solution by rewriting thenth-order nonlinear differential equation in the form ofnfirst-order differential equations. The solution of thesendifferential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
S. Nadeem ◽  
Abdul Rehman ◽  
K. Vajravelu ◽  
Jinho Lee ◽  
Changhoon Lee

An analysis is carried out for axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder with finite radius. The coupled nonlinear partial differential equations of the problem are simplified with the help of similarity transformations and the resulting coupled nonlinear differential equations are solved analytically by homotopy analysis method (HAM). The features of the flow phenomena, inertia, heat transfer, and nanoparticles are analyzed and discussed.


Author(s):  
Dr. K.V.Tamil Selvi , Et. al.

In this paper, analysis of nonlinear partial differential equations on velocities and temperature with convective boundary conditions are investigated. The governing partial differential equations are transformed into ordinary differential equations by applying similarity transformations. The system of nonlinear differential equations are solved using Homotopy Analysis Method (HAM). An analytical solution is obtained for the values of Magnetic parameter M2, Prandtl number Pr, Porosity parameter


2008 ◽  
Vol 63 (5-6) ◽  
pp. 241-247 ◽  
Author(s):  
Yin-Ping Liu ◽  
Zhi-Bin Li

The aim of this paper is to solve nonlinear differential equations with fractional derivatives by the homotopy analysis method. The fractional derivative is described in Caputo’s sense. It shows that the homotopy analysis method not only is efficient for classical differential equations, but also is a powerful tool for dealing with nonlinear differential equations with fractional derivatives.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. S. Hashemi ◽  
J. Malekinagad ◽  
H. R. Marasi

The homotopy analysis method (HAM) is proposed to obtain a semianalytical solution of the system of fuzzy differential equations (SFDE). The HAM contains the auxiliary parameterħ, which provides us with a simple way to adjust and control the convergence region of solution series. Concept ofħ-meshes and contour plots firstly are introduced in this paper which are the generations of traditionalh-curves. Convergency of this method for the SFDE has been considered and some examples are given to illustrate the efficiency and power of HAM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Abdelaziz Alsubie ◽  
Poom Kumam ◽  
Saleem Nasir ◽  
Taza Gul ◽  
...  

AbstractIn this investigation, heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface is considered. The innovative characteristics and aims of this work are to note that the transportation heat couple stress model involves EMHD, viscous dissipation, Joule heating, and heat absorption, and omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the SWCNTs and MWCNTs in pure human blood. This mathematical model is an appropriate model for biological advantages including testing of human blood for drug deliveries to various parts of the human body. Particularly, the Prandtl number used for the blood is 21 and very large as compared to the other base fluids. Necessary modifications are used to translate the defining partial differential equations and boundary conditions into a layout that can be computed. To obtain mathematical approximations for the resulting scheme of nonlinear differential equations, the innovative homotopy analysis method (HAM) is used. The explanation for velocity, energy, and entropy are exposed and the flow against various influential factors ($$E,\;M,\;k,\;Q,\;S\;{\text{and}}\;Ec$$ E , M , k , Q , S and E c ) is discussed graphically. The numerical values are calculated and summarized for dimensionless $$C_{{fx}} \;{\text{and}}\;Nu_{x} .$$ C fx and N u x . In addition, the current study is compared for various values of $$\Pr$$ Pr to that published literature and an impressive agreement in terms of finding is reported. It has also been noticed that the $$M$$ M and $$E$$ E factors retard the hybrid nanofluid flow, while the temperature of fluid becomes upsurges by the rise in these factors. 11.95% enhancement in the heat transfer rate has been attained using the hybrid nanofluids.


Sign in / Sign up

Export Citation Format

Share Document