scholarly journals Blood based hybrid nanofluid flow together with electromagnetic field and couple stresses

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Abdelaziz Alsubie ◽  
Poom Kumam ◽  
Saleem Nasir ◽  
Taza Gul ◽  
...  

AbstractIn this investigation, heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface is considered. The innovative characteristics and aims of this work are to note that the transportation heat couple stress model involves EMHD, viscous dissipation, Joule heating, and heat absorption, and omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the SWCNTs and MWCNTs in pure human blood. This mathematical model is an appropriate model for biological advantages including testing of human blood for drug deliveries to various parts of the human body. Particularly, the Prandtl number used for the blood is 21 and very large as compared to the other base fluids. Necessary modifications are used to translate the defining partial differential equations and boundary conditions into a layout that can be computed. To obtain mathematical approximations for the resulting scheme of nonlinear differential equations, the innovative homotopy analysis method (HAM) is used. The explanation for velocity, energy, and entropy are exposed and the flow against various influential factors ($$E,\;M,\;k,\;Q,\;S\;{\text{and}}\;Ec$$ E , M , k , Q , S and E c ) is discussed graphically. The numerical values are calculated and summarized for dimensionless $$C_{{fx}} \;{\text{and}}\;Nu_{x} .$$ C fx and N u x . In addition, the current study is compared for various values of $$\Pr$$ Pr to that published literature and an impressive agreement in terms of finding is reported. It has also been noticed that the $$M$$ M and $$E$$ E factors retard the hybrid nanofluid flow, while the temperature of fluid becomes upsurges by the rise in these factors. 11.95% enhancement in the heat transfer rate has been attained using the hybrid nanofluids.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Poom Kumam ◽  
Taza Gul ◽  
Wajdi Alghamdi ◽  
Wiyada Kumam ◽  
...  

AbstractThe current study provides a detailed analysis of steady two-dimensional incompressible and electrically conducting magnetohydrodynamic flow of a couple stress hybrid nanofluid under the influence of Darcy–Forchheimer, viscous dissipation, joule heating, heat generation, chemical reaction, and variable viscosity. The system of partial differential equations of the current model (equation of motion, energy, and concentration) is converted into a system of ordinary differential equations by adopting the suitable similarity practice. Analytically, homotopy analysis method (HAM) is employed to solve the obtained set of equations. The impact of permeability, couple-stress and magnetic parameters on axial velocity, mean critical reflux condition and mean velocity on the channel walls are discussed in details. Computational effects show that the axial mean velocity at the boundary has an inverse relation with couple stress parameter while the permeability parameter has a direct relation with the magnetic parameter and vice versa. The enhancement in the temperature distribution evaluates the pH values and electric conductivity. Therefore, the $$SWCNTs\,\,{\text{and}}\,\,MWCNTs$$ S W C N T s and M W C N T s hybrid nanofluids are used in this study for medication purpose.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Taza Gul ◽  
Abdul Qadeer ◽  
Wajdi Alghamdi ◽  
Anwar Saeed ◽  
Safyan Mukhtar Mukhtar ◽  
...  

Purpose This paper aims to consider the heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface. The innovative characteristics of this paper include electro-magnetohydrodynamic (EMHD) term, viscous dissipation, Joule heating and heat absorption\omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the single wall and multi-wall carbon nanotubes (SWCNTs and MWCNTs) in the blood for the testing purpose of heat transfer and drug deliveries. The experimental value of the Prandtl number used for the blood is 21 from the available literature and very large as compared to the Prandtl number of the other base fluids. Appropriate transformations are incorporated to convert the modeled partial differential equations into the nonlinear ordinary differential equations. The homotopy analysis method (HAM) is used to obtain the solution. The explanation for velocity, energy and entropy are exposed under the influence of various parameters such as E, M, k, Q, S and Ec. The numerical values are calculated and summarized for dimensionless Cf and Nu. Design/methodology/approach In this investigation, heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface is considered. The innovative characteristics of this paper include EMHD term, viscous dissipation, Joule heating and heat absorption\omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the SWCNTs and MWCNTs in the blood for the testing purpose of heat transfer and drug deliveries. The experimental value of the Prandtl number used for the blood is 21 from the available literature and very large as compared to the Prandtl number of the other base fluids. Appropriate transformations are incorporated to convert the modeled partial differential equations into the nonlinear ordinary differential equations. The HAM is used to obtain the solution. The explanation for velocity, energy and entropy are exposed under the influence of various parameters such as E, M, k, Q, S and Ec. The numerical values are calculated and summarized for dimensionless Cf and Nu. Findings The explanation for velocity, energy and entropy are exposed and the flow against various influential factors is discussed graphically. The numerical values are calculated and summarized for dimensionless In addition, the current study is compared for various values of to that published literature and an impressive agreement in terms of finding is reported. It has also been noticed that the and factors retards the hybrid nanofluid flow, while the temperature of fluid becomes upsurges by the rise in these factors. Originality/value This is examined while evaluating the previously discussed publications that study on EMHD aspects of magnetized Casson type hybrid nanofluid via entropy generation research is innovative but also acknowledging that the couple stress model challenged bilaterally on stretching surface has not yet been studied. So, there is an ongoing attempt to bridge such a space.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Aisha Anjum

AbstractThis article focuses on hybrid nanofluid flow induced by stretched surface. The present context covers stagnation point flow of a hybrid nanofluid with the effect of heat generation/absorption. Currently most famous class of nanofluids is Hybrid nanofluid. It contains polystyrene and titanium oxide as a nanoparticles and water as a base fluid. First time attributes of heat transfer are evaluated by utilizing polystyrene–TiO2/H2O hybrid nanofluid with heat generation/absorption. Partial differential equations are converted into ordinary differential equation by using appropriate transformations for heat and velocity. Homotopy analysis method is operated for solution of ordinary differential equations. Flow and heat are disclosed graphically for unlike parameters. Resistive force and heat transfer rate is deliberated mathematically and graphically. It is deduced that velocity field enhanced for velocity ratio parameter whereas temperature field grows for heat generation/absorption coefficient. To judge the production of any engineering system entropy generation is also calculated. It is noticed that entropy generation grows for Prandtl number and Eckert number while it shows opposite behavior for temperature difference parameter.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0249434
Author(s):  
Anwar Saeed ◽  
Wajdi Alghamdi ◽  
Safyan Mukhtar ◽  
Syed Imad Ali Shah ◽  
Poom Kumam ◽  
...  

The present article provides a detailed analysis of the Darcy Forchheimer flow of hybrid nanoliquid past an exponentially extending curved surface. In the porous space, the viscous fluid is expressed by Darcy-Forchheimer. The cylindrical shaped carbon nanotubes (SWCNTs and MWCNTs) and Fe3O4 (iron oxide) are used to synthesize hybrid nanofluid. At first, the appropriate similarity transformation is used to convert the modeled nonlinear coupled partial differential equations into nonlinear coupled ordinary differential equations. Then the resulting highly nonlinear coupled ordinary differential equations are analytically solved by the utilization of the “Homotopy analysis method” (HAM) method. The influence of sundry flow factors on velocity, temperature, and concentration profile are sketched and briefly discussed. The enhancement in both volume fraction parameter and curvature parameter k results in raises of the velocity profile. The uses of both Fe3O4 and CNTs nanoparticles are expressively improving the thermophysical properties of the base fluid. Apart from this, the numerical values of some physical quantities such as skin friction coefficients, local Nusselt number, and Sherwood number for the variation of the values of pertinent parameters are displayed in tabular forms. The obtained results show that the hybrid nanofluid enhances the heat transfer rate 2.21%, 2.1%, and 2.3% using the MWCNTs, SWCNTs, and Fe3O4 nanomaterials.


Author(s):  
Mohammed Zaki Swalmeh

The purpose of the existing study is to examine how heat transfer enables consolidated by variations in the basic advantages of fluids in the existence of free convection with the assistance of suspended hybrid nanofluids. Iron-graphene oxide suspended in water as a hybrid nanofluid flow on a solid sphere is also considered in this work. The partial differential equations are gotten, for this problem, by transforming the mathematical governing equations using similarity equations (stream function). These partial differential equations are solved numerically by Keller-Box method and programmed by MATLAB program. the acquired numerical results are in excellent agreement with the preceding literature results. Graphical results of the influence of the hybrid nanofluid parameters on some physical quantities regarded to examine the behavior of hybrid nanofluid flow were attained, and they proved that hybrid nanofluid flow represents a more essential role in the operation of heat transfer than a regular nanofluid flow.


2019 ◽  
Vol 8 (1) ◽  
pp. 261-269 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Nadeem Alam Khan ◽  
Saif Ullah ◽  
Farah Naz

AbstractThe main objective of the present investigation is to examine the couple stress fluid flow occurring as a result of rotation of a disk. On implementing a suitable transformation, the governing system of partial differential equations (PDEs) is converted into nonlinear differential equations of a single independent variable. These equations are solved analytically by virtue of the Homotopy Analysis Method (HAM) which gives solutions in the form of a series. The solution of most of the governing problems is determined in terms of the absolute exponential and decaying functions by means of this powerful technique. To support analytic results, some graphs are plotted for determining the convergence of the solution. Also the graphical interpretation of velocity profiles corresponding to the effects of pertinent parameters are shown and discussed in detail. The numerical results are calculated for evaluation of the influence of fluid parameter. It can also be anticipated that the radial and axial velocity components show decreasing behavior due to rise in the values of couple stress parameter which conflict the behavior of the tangential component of velocity.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110162
Author(s):  
Aisha Anjum ◽  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Muhammad Yousaf Malik

This article addresses MHD nanofluid flow induced by stretched surface. Heat transport features are elaborated by implementing double diffusive stratification. Chemically reactive species is implemented in order to explore the properties of nanofluid through Brownian motion and thermophoresis. Activation energy concept is utilized for nano liquid. Further zero mass flux is assumed at the sheet’s surface for better and high accuracy of the out-turn. Trasnformations are used to reconstruct the partial differential equations into ordinary differential equations. Homotopy analysis method is utilized to obtain the solution. Physical features like flow, heat and mass are elaborated through graphs. Thermal stratified parameter reduces the temperature as well as concentration profile. Also decay in concentration field is noticed for larger reaction rate parameter. Both temperature and concentration grows for Thermophoresis parameter. To check the heat transfer rate, graphical exposition of Nusselt number are also discussed and interpret. It is noticed that amount of heat transfer decreases with the increment in Hartmann number. Numerical results shows that drag force increased for enlarged Hartmann number.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1242
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak ◽  
Fahad S. Al-Mubaddel ◽  
Sakhinah Abu Bakar ◽  
...  

The present study reveals the behavior of shear-thickening and shear-thinning fluids in magnetohydrodynamic flow comprising the significant impact of a hybrid nanofluid over a porous radially shrinking/stretching disc. The features of physical properties of water-based Ag/TiO2 hybrid nanofluid are examined. The leading flow problem is formulated initially in the requisite form of PDEs (partial differential equations) and then altered into a system of dimensionless ODEs (ordinary differential equations) by employing suitable variables. The renovated dimensionless ODEs are numerically resolved using the package of boundary value problem of fourth-order (bvp4c) available in the MATLAB software. The non-uniqueness of the results for the various pertaining parameters is discussed. There is a significant enhancement in the rate of heat transfer, approximately 13.2%, when the impact of suction governs about 10% in the boundary layer. Therefore, the heat transport rate and the thermal conductivity are greater for the new type of hybrid nanofluid compared with ordinary fluid. The bifurcation of the solutions takes place in the problem only for the shrinking case. Moreover, the sketches show that the nanoparticle volume fractions and the magnetic field delay the separation of the boundarylayer.


Author(s):  
Ghulam Rasool ◽  
Anum Shafiq ◽  
Yu-Ming Chu ◽  
Muhammad Shoaib Bhutta ◽  
Amjad Ali

Introduction: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface. Methods: The two important aspects, Brownian motion and Thermophoresis are considered. Thermal radiation is also included in present model. Based on the heat and mass flux, the Cattaneo-Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model. Results: The results are plotted graphically to see the variations in three main profiles i.e. momentum, temperature and concentration profile. Conclusion: The outcomes indicate that skin friction enhances due to implementation of Darcy medium. It is also noted that the relaxation time parameter results in enhancement of the temperature distribution. Thermal radiation enhances the temperature distribution and so is the case with skin friction.


Sign in / Sign up

Export Citation Format

Share Document