On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation

Author(s):  
Hong Zhang ◽  
Jingye Yan ◽  
Xu Qian ◽  
Xianming Gu ◽  
Songhe Song
Author(s):  
Dan Tian ◽  
Yuanfeng Jin ◽  
Gang Lv

In the paper, a fully discrete compact difference scheme with $O(\tau^{2}+h^{4})$ precision is established by considering the numerical approximation of the one-dimensional Allen-Cahn equation. The numerical solutions satisfy discrete maximum principle under reasonable step ratio and time step constraint is proved. And the energy stability for the fully discrete scheme is investigated. An example is finally presented to show the effectiveness of scheme.


2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Alexander Yeliseev ◽  
Tatiana Ratnikova ◽  
Daria Shaposhnikova

The aim of this study is to develop a regularization method for boundary value problems for a parabolic equation. A singularly perturbed boundary value problem on the semiaxis is considered in the case of a “simple” rational turning point. To prove the asymptotic convergence of the series, the maximum principle is used.


Sign in / Sign up

Export Citation Format

Share Document