scholarly journals Simultaneous monitoring of the values of CD, Crosstalk and OSNR phenomena in the physical layer of the optical network using CNN

2021 ◽  
Vol 53 (11) ◽  
Author(s):  
Tomasz Mrozek ◽  
Krzysztof Perlicki

AbstractThe aim of the research was to explore the possibilities of using the Asynchronous Delay Tap Sampling (ADTS) and Convolutional Neural Network (CNN) methods to monitor the simultaneously occurring phenomena in the physical layer of the optical network. The ADTS method was used to create a data sets showing the combination of Chromatic Dispersion (CD), Crosstalk and Optical to Signal Noise Ratio (OSNR) as optical disturbances in graphic form. Data were generated for 10 GB/s, Non-return-to-zero On–off keying (NRZ-OOK) and Differential Phase Shift Keying (DPSK) modulation and bit delays: 1 bit, 0.5 bit and 0.25 bit. A total of 6 data sets of 62,000 images each were obtained. The learning process was carried out for the number of epochs 50 and 1000. From the obtained learning results of the network, models with the best $$R^{2}$$ R 2 matching factor were selected. The learned models were further used to study the recognition of three phenomena simultaneously. The tests were carried out on sets of 2500 images in a combination of interference in the following ranges: 400–1600 ps/nm for CD and 10–30 dB for Crosstalk and OSNR. Very good results were obtained for recognizing simultaneously occurring phenomena using models learned up to 1000 epoch. Accuracy of over 99% was obtained for CD and Crosstalk for both modulations. In the case of the OSNR phenomenon, slightly weaker results were obtained above 96% in most cases. For models taught up to 50 epoch, very good results were obtained for the CD phenomenon (over 99%). For Crosstalk weaker results for OOK modulation were obtained. Poor results were obtained for the OSNR phenomenon, where recognition accuracy ranged from 50 to 80%, depending on the type of modulation and bit delay. Based on the conducted research, it was established that the use of ADTS and CNN methods enables monitoring of simultaneously occurring CD, Crosstalk and OSNR interference in the physical layer of the optical network, while maintaining the requirements for Optical Performance Monitoring systems. These requirements are met for network models learned up to 1000 epoch.

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 402 ◽  
Author(s):  
Fangqi Shen ◽  
Jing Zhou ◽  
Zhiping Huang ◽  
Longqing Li

As optical performance monitoring (OPM) requires accurate and robust solutions to tackle the increasing dynamic and complicated optical network architectures, we experimentally demonstrate an end-to-end optical signal-to-noise (OSNR) estimation method based on the convolutional neural network (CNN), named OptInception. The design principles of the proposed scheme are specified. The idea behind the combination of the Inception module and finite impulse response (FIR) filter is elaborated as well. We experimentally evaluate the mean absolute error (MAE) and root-mean-squared error (RMSE) of the OSNR monitored in PDM-QPSK and PDM-16QAM signals under various symbol rates. The results suggest that the MAE reaches as low as 0.125 dB and RMSE is 0.246 dB in general. OptInception is also proved to be insensitive to the symbol rate, modulation format, and chromatic dispersion. The investigation of kernels in CNN indicates that the proposed scheme helps convolutional layers learn much more than a lowpass filter or bandpass filter. Finally, a comparison in performance and complexity presents the advantages of OptInception.


2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Manisha Bharti ◽  
Ajay K. Sharma ◽  
Manoj Kumar

AbstractThis paper focuses on increasing the number of subscribers in optical code-division multiple access (OCDMA) system by using one of the features of light signal that it can be propagated in two polarization states. The performance of two-dimensional (2D) OCDMA system based on wavelength-time coding scheme by adding polarization state is investigated at varying data rates from 1 GHz to 6 GHz and for various modulation formats. It is reported that with increase in data rate of system, the performance of the system deteriorates due to polarization mode dispersion. Non-return to-zero (RZ), return to-zero (RZ), carrier suppressed return-to-zero (CSRZ) and differential phase shift keying (DPSK) modulation formats are simulated for a single user system with polarization. Investigations reveal that differential phase shift keying (DPSK) modulation format suits best to the proposed system and exhibit the potential to improve the flexibility of system for more number of users. The investigations are reported in terms of Q-factor, BER, received optical power (ROP) and eye diagrams.


Sign in / Sign up

Export Citation Format

Share Document