scholarly journals Stratifications on the Ran Space

Order ◽  
2021 ◽  
Author(s):  
Jānis Lazovskis

AbstractWe describe a partial order on finite simplicial complexes. This partial order provides a poset stratification of the product of the Ran space of a metric space and the nonnegative real numbers, through the Čech simplicial complex. We show that paths in this product space respecting its stratification induce simplicial maps between the endpoints of the path.

2003 ◽  
Vol 10 (1) ◽  
pp. 77-98
Author(s):  
Marco Grandis

Abstract This is the sequel of a paper where we introduced an intrinsic ho-motopy theory and homotopy groups for simplicial complexes. We study here the relations of this homotopy theory with the well-known homology theory of simplicial complexes. Also, our investigation is aimed at applications in image analysis. A metric space 𝑋 representing an image, has a structure of simplicial complex at each resolution ε > 0, and the corresponding combinatorial homology groups give information on the image. Combining the methods developed here with programs for automatic computation of combinatorial homology might open the way to realistic applications.


10.37236/1245 ◽  
1996 ◽  
Vol 3 (1) ◽  
Author(s):  
Art M. Duval

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity; they also introduced the $h$-triangle, a doubly-indexed generalization of the $h$-vector which is combinatorially significant for nonpure shellable complexes. Stanley subsequently defined a nonpure simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generalize the Cohen-Macaulay conditions for pure complexes, so that a nonpure shellable complex is sequentially Cohen-Macaulay. We show that algebraic shifting preserves the $h$-triangle of a simplicial complex $K$ if and only if $K$ is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for the pure case. Immediate consequences include that nonpure shellable complexes and sequentially Cohen-Macaulay complexes have the same set of possible $h$-triangles.


Author(s):  
Paweł Pasteczka

Abstract Each family ℳ of means has a natural, partial order (point-wise order), that is M ≤ N iff M(x) ≤ N(x) for all admissible x. In this setting we can introduce the notion of interval-type set (a subset ℐ ⊂ℳ such that whenever M ≤ P ≤ N for some M, N ∈ℐ and P ∈ℳ then P ∈ℐ). For example, in the case of power means there exists a natural isomorphism between interval-type sets and intervals contained in real numbers. Nevertheless there appear a number of interesting objects for a families which cannot be linearly ordered. In the present paper we consider this property for Gini means and Hardy means. Moreover, some results concerning L∞ metric among (abstract) means will be obtained.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


10.37236/1900 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakob Jonsson

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of semi-nonevasive simplicial complexes with this property. A certain generalization turns out to yield the class of semi-collapsible simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.


Author(s):  
Khalid Hatim ◽  
Azeddine Baalal

In this paper, we construct a new framework that’s we call the weighted [Formula: see text]-simplicial complex and we define its spectral gap. An upper bound for our spectral gap is given by generalizing the Cheeger constant. The lower bound for our spectral gap is obtained from the first nonzero eigenvalue of the Laplacian acting on the functions of certain weighted [Formula: see text]-simplicial complexes.


2012 ◽  
Vol 55 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Kotaro Mine ◽  
Katsuro Sakai

AbstractLet |K| be the metric polyhedron of a simplicial complex K. In this paper, we characterize a simplicial subdivision K′ of K preserving the metric topology for |K| as the one such that the set K′(0) of vertices of K′ is discrete in |K|. We also prove that two such subdivisions of K have such a common subdivision.


Author(s):  
M. Maiti ◽  
A. C. Babu

AbstractJ. B. Diaz and F. T. Metcalf established some results concerning the structure of the set of cluster points of a sequence of iterates of a continuous self-map of a metric space. In this paper it is shown that their conclusions remain valid if the distance function in their inequality is replaced by a continuous function on the product space. Then this idea is extended to some other mappings and to uniform and general topological spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1160
Author(s):  
Václav Snášel ◽  
Pavla Dráždilová ◽  
Jan Platoš

Many real networks in biology, chemistry, industry, ecological systems, or social networks have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past few decades, a variety of complex systems have been successfully described as networks whose links connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between two or more nodes and generalized network structures to allow us to go beyond the framework of pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the evolution of real simplicial complex networks. We conclude with a summary of composition k-CT graphs (glued graphs); their closed trail distances are in a specified range.


2016 ◽  
Vol 08 (03) ◽  
pp. 399-429 ◽  
Author(s):  
A. Costa ◽  
M. Farber

In this paper we introduce and develop the multi-parameter model of random simplicial complexes with randomness present in all dimensions. Various geometric and topological properties of such random simplicial complexes are characterised by convex domains in the high-dimensional parameter space (rather than by intervals, as in the usual one-parameter models). We find conditions under which a multi-parameter random simplicial complex is connected and simply connected. Besides, we give an intrinsic characterisation of the multi-parameter probability measure. We analyse links of simplexes and intersections of multi-parameter random simplicial complexes and show that they are also multi-parameter random simplicial complexes.


Sign in / Sign up

Export Citation Format

Share Document