chemistry industry
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 10)

H-INDEX

2
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 160
Author(s):  
Xuelin Zhang ◽  
Donghao Zhang ◽  
Alexander Leye ◽  
Adrian Scott ◽  
Luke Visser ◽  
...  

This paper focuses on improving the performance of scientific instrumentation that uses glass spray chambers for sample introduction, such as spectrometers, which are widely used in analytical chemistry, by detecting incidents using deep convolutional models. The performance of these instruments can be affected by the quality of the introduction of the sample into the spray chamber. Among the indicators of poor quality sample introduction are two primary incidents: The formation of liquid beads on the surface of the spray chamber, and flooding at the bottom of the spray chamber. Detecting such events autonomously as they occur can assist with improving the overall operational accuracy and efficacy of the chemical analysis, and avoid severe incidents such as malfunction and instrument damage. In contrast to objects commonly seen in the real world, beading and flooding detection are more challenging since they are of significantly small size and transparent. Furthermore, the non-rigid property increases the difficulty of the detection of these incidents, as such that existing deep-learning-based object detection frameworks are prone to fail for this task. There is no former work that uses computer vision to detect these incidents in the chemistry industry. In this work, we propose two frameworks for the detection task of these two incidents, which not only leverage the modern deep learning architectures but also integrate with expert knowledge of the problems. Specifically, the proposed networks first localize the regions of interest where the incidents are most likely generated and then refine these incident outputs. The use of data augmentation and synthesis, and choice of negative sampling in training, allows for a large increase in accuracy while remaining a real-time system for inference. In the data collected from our laboratory, our method surpasses widely used object detection baselines and can correctly detect 95% of the beads and 98% of the flooding. At the same time, out method can process four frames per second and is able to be implemented in real time.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongyi Tu ◽  
Donglei Liu ◽  
Zhenbin Chen ◽  
Chunli Liu

Purpose Using a reversible addition fragmentation chain transfer reaction, a series of resins were prepared by using N, N-diethyl acrylamide (DEA), poly (ß-hydroxyethyl methacrylate) (PHEMA) as hydrophilic blocks and poly (glycidyl methacrylate) (PGMA) as hydrophobic blocks (and as a target for immobilizing penicillin G acylase [PGA]) and the low critical solution temperature (LCST) of which could be adjusted by changing the segment length of blocks. Design/methodology/approach To make the catalytic conversion temperature of immobilized PGA fallen into the temperature range of the sol state of thermosensitive block resin, a type of thermosensitive block resin, i.e. PDEA-b-PHEMA-b-PGMA (DHGs) was synthesized to immobilize PGA, and the effect of segment order of block resin was investigated on the performance of PGA. Findings Carrier prepared with monomers molar ratio of n(DEA) : n(HEMA): n(GMA) = 100: 49: 36 presented loading capacity (L) and enzyme activity recovery ratio (Ar) of 110 mg/g and 90%, respectively, and a block resin with LCST value of 33 °C was essential for keeping higher Ar of PGA. Originality/value PGA has become an important biocatalyst in modern chemistry industry. However, disadvantages include difficulty in separation, poor repeatability and high cost, which limits the scope of PGA applications. The effective method is to immobilize the enzyme to the carrier, which could overcome the disadvantage of free enzyme.


Amino Acids ◽  
2021 ◽  
Author(s):  
Katarzyna Guzow ◽  
Ewa Mulkiewicz ◽  
Michał Obuchowski ◽  
Wiesław Wiczk

AbstractSearching for new drugs is still a challenge for science, mainly because of civilization development and globalization which promote the rapid spread of diseases, which is particularly dangerous in the case of infectious ones. Moreover, readily available already known antibiotics are often overused or misused, possibly contributing to the increase in the number of multidrug-resistant microorganisms. A consequence of this is the need for new structures of potential drugs. One of them is a benzoxazole moiety, a basic skeleton of a group of fluorescent heterocyclic compounds already widely used in chemistry, industry, and medicine, which is also present in naturally occurring biologically active compounds. Moreover, synthetic benzoxazoles are also biologically active. Considering all of that, a large group of non-proteinogenic amino acids based on 3-(2-benzoxazol-5-yl)alanine skeleton was studied in search for new antimicrobial and anticancer agents. Screening tests revealed that antibacterial potential of 41 compounds studied is not very high; however, they are selective acting only against Gram-positive bacteria (B. subtilis). Moreover, almost half of the studied compounds have antifungal properties, also against pathogens (C. albicans). Most of studied compounds are toxic to both normal and cancer cells. However, in a few cases, toxicity to normal cells is much lower than for cancer cells indicating these compounds as future anticancer agents. The research carried out on such a large group of compounds allowed to establish a structure–activity relationship which enables to select candidates for further modifications, necessary to improve their biological activity and obtain a new lead structure with potential for therapeutic use.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1160
Author(s):  
Václav Snášel ◽  
Pavla Dráždilová ◽  
Jan Platoš

Many real networks in biology, chemistry, industry, ecological systems, or social networks have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past few decades, a variety of complex systems have been successfully described as networks whose links connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between two or more nodes and generalized network structures to allow us to go beyond the framework of pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the evolution of real simplicial complex networks. We conclude with a summary of composition k-CT graphs (glued graphs); their closed trail distances are in a specified range.


2021 ◽  
Author(s):  
Fan Yang ◽  
Zhihui Liu ◽  
Xiaodong Liu ◽  
Andong Feng ◽  
Bing Zhang ◽  
...  

The oxidation reactions of organic compounds are important transformations for the fine and bulk chemistry industry. However, they usually involve the employment of noble metal catalysts and suffer from toxic...


2020 ◽  
Vol 3 (2) ◽  
pp. 64-96
Author(s):  
H. RM. Juddy Prabowo ◽  
Sarah Febrina Yolanda

The purpose of this study was to analyze the leading sectors in the city of Cimahi and its influence on the regional minimum wage (UMSK) of the city of Cimahi. This research uses descriptive quantitative research. The data used is the Large and Medium Industry Statistical Data for 2011 to 2015. The leading sectors in Cimahi City in 2019 based on the 5 digit KBLI criteria, Large Business Scale, Added Value and Labor Productivity growth in the 2015 Large Industry data are 13131 Yarn Refinement Industry, 17019 Other Paper Industry, 13911 Knitted Fabric Industry, 20116 Basic Organic Chemistry Industry, Dyestuffs and Pigments, Dyes and Pigments, 25940 industrial Buckets, Cans, Drums, and Similar Containers of Metal, and 26310 Telephone and Facsimile Equipment Industry.


2019 ◽  
Vol 9 (2) ◽  
pp. 123-137
Author(s):  
Arun Kumar Sharma ◽  
Meenakshi Saxena ◽  
Rashmi Sharma

Background: Of-late researches in colloid chemistry are becoming increasingly important in various branches of chemistry, industry, medicine and allied fields. Copper surfactants derived from various edible oils provide an interesting area of investigation pertaining to its fundamental information regarding their colloid-chemical behaviour. Copper (II) soaps and their urea complexes in polar and non-polar solvents have gained considerable popularity due to their immense use and widespread applications such as wood preservation, foaming, wetting, biocidal, pesticidal activities, fungicidal, detergency, emulsification, paints, lubrication etc. Objective: Present work has been initiated with a view to obtain a profile due to the nature and structure of copper soap and their urea complexes with long chain fatty acids in polar and non-polar solvent, which have great significance in explaining their characteristics under different conditions. The objective of the present work is study of micellar characterizations of copper soap and their urea complexes in polar (methanol) and non-polar (benzene) solvents of varying composition and subsequent determinations of CMC using physical properties such as, viscosity. This will provide fundamental information regarding their colloid chemical behavior. Methods: The density, molar volume, viscosity, specific viscosity, and fluidity of Cu (II) soap- urea complexes derived from various edible oils in a benzene-methanol solvent system have been determined at a constant temperature of 303.15 K. Results: Results: The results were used to determine the critical micelle concentration (CMC), soap complex-solvent interactions and the effect of chain length of the surfactant molecules on various parameters. The values of the CMC in the higher volume percent of methanol are higher than those of the lower volume percent of methanol. The values of CMC for these complexes are following the order: CSoU>CSeU> CGU > CMU : This shows that there is a decrease in the CMC values with an increase of the average molecular weight of the complex. The conclusions with regard to solute-solute and solutesolvent interactions have been discussed in terms of the well-known Moulik’s and Jones- Dole equations. The effect of surfactant concentration on the viscosity of the solution in the solvent mixtures has been discussed. The observations suggested that the solvent structure breaking effect by the solute on the solvent molecules is more prominent above the CMC as compared to below the CMC. Conclusion: The vital information about the micellar behavior of synthesized molecules as a solute and their interactions with different solvents will plays an important role in various industrial and biological applications.


Sign in / Sign up

Export Citation Format

Share Document