scholarly journals Cliques Are Bricks for k-CT Graphs

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1160
Author(s):  
Václav Snášel ◽  
Pavla Dráždilová ◽  
Jan Platoš

Many real networks in biology, chemistry, industry, ecological systems, or social networks have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past few decades, a variety of complex systems have been successfully described as networks whose links connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between two or more nodes and generalized network structures to allow us to go beyond the framework of pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the evolution of real simplicial complex networks. We conclude with a summary of composition k-CT graphs (glued graphs); their closed trail distances are in a specified range.

2021 ◽  
Vol 118 (11) ◽  
pp. 113101
Author(s):  
Xiaoli Zhu ◽  
Siting Ding ◽  
Lihui Li ◽  
Ying Jiang ◽  
Biyuan Zheng ◽  
...  

1992 ◽  
Vol 278 ◽  
Author(s):  
J. A. Rifkin ◽  
C. S. Becquart ◽  
D. Kim ◽  
P. C. Clapp

AbstractWe have carried out a series of atomistic simulations on arrays of about 10,000 atoms containing an atomically sharp crack and subjected to increasing stress levels. The ordered stoichiometric alloys B2 NiAl, B2 RuAl and A15 Nb3AI have been studied at different temperatures and stress levels, as well as the elements Al, Ni, Nb and Ru. The many body interactions used in the simulations were derived semi-empirically, using techniques related to the Embedded Atom Method. Trends in dislocation generation rates and crack propagation modes will be discussed and compared to experimental indications where possible, and some of the simulations will be demonstrated in the form of computer movies.


2009 ◽  
Vol 109 (4) ◽  
pp. 664-666 ◽  
Author(s):  
S. I. Pesotskiĭ ◽  
R. B. Lyubovskiĭ ◽  
M. V. Kartsovnik ◽  
W. Biberacher ◽  
N. D. Kushch ◽  
...  

2021 ◽  
Author(s):  
Huan Wang ◽  
Chuang Ma ◽  
Han-Shuang Chen ◽  
Ying-Cheng Lai ◽  
Hai-Feng Zhang

Abstract Previous efforts on data-based reconstruction focused on complex networks with pairwise or two-body interactions. There is a growing interest in networks with high-order or many-body interactions, raising the need to reconstruct such networks based on observational data. We develop a general framework combining statistical inference and expectation maximization to fully reconstruct 2-simplicial complexes with two- and three-body interactions based on binary time-series data from social contagion dynamics. We further articulate a two-step scheme to improve the reconstruction accuracy while significantly reducing the computational load. Through synthetic and real-world 2-simplicial complexes, we validate the framework by showing that all the connections can be faithfully identified and the full topology of the 2-simplicial complexes can be inferred. The effects of noisy data or stochastic disturbance are studied, demonstrating the robustness of the proposed framework.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Soonchul Choi ◽  
Myung-Ki Cheoun ◽  
K S Kim ◽  
Hungchong Kim ◽  
H Sagawa

Abstract We suggest a hybrid model for neutron star matter to discuss the hyperon puzzle inherent in the 2.0 M$_{\odot}$ of the neutron star. For the nucleon–nucleon ($NN$) interaction, we employ the Skyrme–Hartree–Fock approach based on various Skyrme interaction parameter sets, and take the Brueckner–Hartree–Fock approach for the interactions related to hyperons. For the many-body interactions including hyperons, we make use of the multi-pomeron-exchange model, whose parameters have been adjusted to the data deduced from various hypernuclei properties. For clear understanding of the physics in the hybrid model, we discuss fractional functions of related particles, symmetry energies, and chemical potentials in dense matter. Finally, we investigate the equations of state and mass–radius relation of neutron stars, and show that the hybrid model can properly describe the 2.0 M$_{\odot}$ neutron star mass data with the many-body interaction employed in the hybrid model. Recent tidal deformability data from the gravitational wave observation are also compared to our calculations, especially in terms of the neutron skin of $^{208}$Pb and nuclear incompressibility.


1982 ◽  
Vol 21 ◽  
Author(s):  
P.L. Rossiter ◽  
P.J. Lawrence

ABSTRACTConsideration of only nearest neighbour pairwise interactions Vij in a binary alloy leads to the classification of the system as ordering (unlike near neighbours) or clustering (like near neighbours), depending upon the sign of Vij However, this simple classification loses meaning when multi-atom correlations, many-body interactions or a longer range interaction are considered. For example, the first nearest neighbour interaction may favour ordering while the second, which may be of comparable magnitude, may favour clustering. By extending the Bragg-Williams model to include second near-neighbour interactions in fcc alloys, it is shown that a miscibility gap may form in the region of the orderdisorder solvus, leading to a complicated sequence of atomicrearrangement upon slow cooling. Despite the well-known failings of the point approximation when applied to fcc alloys, the results are shown to be consistent with the unusual behaviour exhibited by some systems.


1990 ◽  
Vol 213 ◽  
Author(s):  
J. Mikalopas ◽  
P.A. Sterne ◽  
M. Sluiter ◽  
P.E.A. Turchi

ABSTRACTOne way to calculate the coherent phase diagram of an alloy based on first principles methods is to compute the ground state total energy for various ordered configurations, from which many-body interactions can be calculated and employed in a thermodynamic model. If the Connolly and Williams method (CWM) is used to extract the many-body interactions from the calculated total energies, the resulting many-body interactions can exhibit a strong dependence on the choice of ordered configurations and multi-site clusters, and the accuracy and convergence of the CWM energy expansion is not assured. To overcome this difficulty, a successful systematic method for implementing the CWM is proposed. This approach is applied to a study of the fcc-based Ni-V and Pd-V substitutional alloys and these interaction parameters together with the cluster variation method (CVM) are used to calculate phase diagrams.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 445
Author(s):  
Mahi R. Singh

In this review article, we discuss the many-body interactions in plasmonic nanohybrids made of an ensemble of quantum emitters and metallic nanoparticles. A theory of the linear and nonlinear optical emission intensity was developed by using the many-body quantum mechanical density matrix method. The ensemble of quantum emitters and metallic nanoparticles interact with each other via the dipole-dipole interaction. Surfaces plasmon polaritons are located near to the surface of the metallic nanoparticles. We showed that the nonlinear Kerr intensity enhances due to the weak dipole-dipole coupling limits. On the other hand, in the strong dipole-dipole coupling limit, the single peak in the Kerr intensity splits into two peaks. The splitting of the Kerr spectrum is due to the creation of dressed states in the plasmonic nanohybrids within the strong dipole-dipole interaction. Further, we found that the Kerr nonlinearity is also enhanced due to the interaction between the surface plasmon polaritons and excitons of the quantum emitters. Next, we predicted the spontaneous decay rates are enhanced due to the dipole-dipole coupling. The enhancement of the Kerr intensity due to the surface plasmon polaritons can be used to fabricate nanosensors. The splitting of one peak (ON) two peaks (OFF) can be used to fabricate the nanoswitches for nanotechnology and nanomedical applications.


Sign in / Sign up

Export Citation Format

Share Document